首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   1篇
  国内免费   7篇
安全科学   2篇
环保管理   26篇
综合类   23篇
基础理论   4篇
污染及防治   2篇
评价与监测   4篇
  2024年   1篇
  2023年   4篇
  2022年   7篇
  2021年   6篇
  2020年   2篇
  2017年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2005年   3篇
  2004年   1篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1992年   1篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1987年   1篇
  1986年   1篇
排序方式: 共有61条查询结果,搜索用时 31 毫秒
51.
沱江氮污染物转化规律及污染容量   总被引:6,自引:2,他引:6  
本文研究氮污染物在沱江水体中的转化规律及其主要的影响因素。通过实验室模拟试验和野外现场水团追踪试验求得氨氮在沱江水中的总消失速度常数k_T、硝化速度常数k_N、温度校正系数θ以及氨氮的耗氧系数f_n。在参数计算方法上较前人有所改进。建立了计算沱江氮污染容量的数学模式,并用该模式估算了沱江在不同流量和不同水温条件下所能容纳氮污染物的负荷量。  相似文献   
52.
沱江流域生态安全预警及其生态调控对策   总被引:9,自引:2,他引:7  
沱江流域生态安全预警入手,基于压力-状态-响应(pressure status response,PSR)模型构建生态安全评价指标体系,采用层次分析、时间序列预测、模糊综合评判、主成分分析方法对流域2010、2015、2020年的生态安全状态进行评价与预警研究.结果表明:(1)沱江流域各区段在2010、2015、2020年3个时段内,整体上呈现全流域生态安全跃升的趋势,生态安全状态逐步好转;(2)纵观2010-2020年期间流域内各区段的生态安全变化,上游区段的生态安全状态明显好于中下游区段,其次为中游区段,下游区段的生态安全状态最为令人担忧.因此,沱江下游是流域内生态安全建设的重点;(3)沱江流域2010-2020年生态安全预警分为3类:安全区域、持续危险区域和退化区域.安全区域包括沱江上、中、下游的21个市县区;持续危险区域涵盖了中、下游的8个县区;退化区域为中游的2个县;(4)沱江流域生态安全预警的主要预警因子可以归纳为植被覆盖与农业灾害因子、人口素质因子、土地承载力因子、景观格局因子、面源污染因子、水土流失因子6大类.针对沱江流域生态安全预警因子的分析结果,提出以下生态调控对策:(1)积极修复植被,改善生态环境;(2)增强农业的防灾减灾能力;(3)加强技能培训,提高人口素质;(4)合理利用土地资源,提高土地承载力;(5)优化土地利用结构,加大景观多样性;(6)提倡生物防治,控制面源污染;(7)大力进行水土保持建设.  相似文献   
53.
<正> 水质规划就是全面,系统,综合地考虑一个区域内的社会、经济、技术和水环境质量等因素的现状与发展、提出规划期限内合理水质目标及其实施方案。因此,水质目标确定研究是水质规划中较为关键的工作。能否确定出符合实际情况的水质目标是水质规划成败的关键所在。木文在水质目标确定研究方面作了一些探索。  相似文献   
54.
总结了河流污染治理和生态修复重建的国内外研究进展,在分析2004年沱江重大污染事故的基础上,提出了进行河流污染后的治理以及生态重建的几点建议.  相似文献   
55.
沱江和涪江是长江上游的重要支流,且都存在严重的水体污染问题,其中氮(N)和磷(P)为最主要污染物.通过对沱江和涪江干支流进行取样并进行水体N和P空间分布特征的分析,寻找不同空间水质差异的原因,为长江上游及其支流流域地表水污染防控提供科学依据.结果表明,沱江水系和涪江水系均存在严重的总氮(TN)污染,劣Ⅴ类水质断面占比分别高达94%和50%,总磷(TP)污染适中,主要集中在Ⅱ类~Ⅳ类水质,但沱江水系TN和TP浓度整体上要高于涪江水系,污染程度要比涪江水系更严重;对沱江而言,干流硝态氮(NN)浓度从上游到下游呈现先增加后降低的趋势,氨氮(AN)浓度最大值出现在干流上游位点,中下游浓度较低,每流经一座城市后,TP浓度均明显增高,涪江干流的TN和NN浓度呈现上中下游逐渐增加的趋势;沱江和涪江水系均表现出支流TN和TP浓度大于干流的现象,且河流中的TN、 TP和NN还受水体pH和水温(T)影响,可见河流N和P污染控制应重视水环境因素的影响.  相似文献   
56.
宋娇娇  汪艺梅  孙静  方淑红 《环境科学》2022,43(9):4522-4531
为研究沱江流域表层水中全氟/多氟化合物(PFASs)的污染特征和来源,采用超高效液相色谱-串联质谱(UPLC-MS/MS)分析了沱江48个表层水样中的PFASs.结果表明,沱江流域水体中ρ(ΣPFASs)为12.5~3789 ng·L-1,其中全氟辛烷羧酸(PFOA)为最主要污染组分,ρ(PFOA)为9.97~3764 ng·L-1,占比高达73.6%~99.8%,说明传统PFASs仍是沱江流域主要的PFASs.所涉新兴PFASs检出率最高的为F-53B,检出率达100%,F-53B已在沱江流域被广泛使用.沱江流域浓度最高的新兴PFASs为6:2氟调聚磺酸(6:2 FTS)[nd~27.3 ng·L-1,平均值为(9.12±7.70) ng·L-1],与国内外其它河流相比,处于较高污染水平.工业园区附近采样点的PFASs污染水平较高,其次为沱江下游的泸州河段,说明氟工业园区排放和人类日常生产活动是造成沱江流域PFASs污染的主要影响因素.最后,通过估算得出,沱江流域水相向长江排放的PFASs通量为353 kg·a-1,其中排放通量最高组分为PFOA (348 kg·a-1),可为沱江流域PFASs管控提供基础数据.  相似文献   
57.
58.
沱江水质污染特征及防治对策   总被引:1,自引:1,他引:1  
本文以沱江水质监测资料为依据,揭示了沱江水质污染特征及其时空变化视律。针对沱江存在的水环境问题,从宏观上提出了防治水质污染的对策。  相似文献   
59.
沱江内江城区段水质分析   总被引:1,自引:0,他引:1  
为了解大坝拦截后沱江内江城区段水质情况,采用相应的国家标准方法对沱江水体的氮、磷、COD、BOD等指标进行监测。结果显示,NH 4+-N、NO 3--N、NO 2--N、TP的平均浓度分别为0.94 mg/L、1.35 mg/L、0.01 mg/L、0.78 mg/L,其中TP含量超标率达289.5%,NO 3--N为氮素的主要存在形态,占58.7%。建议相关部门采取措施,调高工业废水、污水处理厂污水排放标准,深化污水处理,缓解沱江氮、磷污染。  相似文献   
60.
沱江流域污染负荷时空变化特征研究   总被引:3,自引:1,他引:3  
肖宇婷  谌书  樊敏 《环境科学学报》2021,41(5):1981-1995
选取沱江流域为研究区域,采用排污系数法对2007、2017年沱江流域28个区县的总磷(TP)、总氮(TN)、氨氮(NH3-N)和化学需氧量(COD)的污染负荷进行估算,并使用相关分析、主成分分析、聚类分析和空间分析法揭示流域污染负荷时空变化与社会经济因素及土地利用方式的相互作用关系.结果表明:①4种污染负荷在时间尺度上呈整体增加趋势,空间尺度上呈高度异质性.其中,COD污染负荷增长量和增长率最大,分别为87556.54 t、24.16%.上游龙泉驿区COD、NH3-N污染负荷增加量最大,分别为7988.15、469.83 t,而TN和TP增加量最大的区域出现在下游的龙马潭区和泸县,分别为1556.08、181.93 t.②污染负荷与农业经济社会指标相关性较强,COD、NH3-N、TN和TP污染负荷与非农业人口数量的相关系数分别由2007年的0.460、0.218、0.226和0.184变为2017年的0.953、0.938、0.881和0.871,且农业用地和建设用地大面积分布的地区污染更加严重.③4种污染负荷的污染源聚类结果均发生变化,这与其他污染源类型向城镇污染源类型转变相关,发生转变的区县多数集中在农业用地和建设用地大面积分布的区域,且这些区域城镇化率或二、三产业占生产总值比的变化量均较大,如中游的乐至县、雁江区、东兴区等.聚类未发生变化的区县对应的土地利用类型主要为林地和草地,其城镇化率或二、三产业占生产总值比的变化量均较小,如下游的自流井区和中游的内江市市中区等.对沱江流域污染负荷时空变化特征的探讨可为该流域污染物总量调控和环境健康发展提供理论依据和数据支撑.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号