首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2881篇
  免费   320篇
  国内免费   824篇
安全科学   486篇
废物处理   59篇
环保管理   236篇
综合类   2357篇
基础理论   359篇
污染及防治   230篇
评价与监测   243篇
社会与环境   33篇
灾害及防治   22篇
  2024年   40篇
  2023年   97篇
  2022年   135篇
  2021年   171篇
  2020年   147篇
  2019年   137篇
  2018年   101篇
  2017年   114篇
  2016年   127篇
  2015年   135篇
  2014年   312篇
  2013年   209篇
  2012年   181篇
  2011年   234篇
  2010年   148篇
  2009年   168篇
  2008年   189篇
  2007年   209篇
  2006年   153篇
  2005年   138篇
  2004年   107篇
  2003年   93篇
  2002年   70篇
  2001年   68篇
  2000年   53篇
  1999年   49篇
  1998年   65篇
  1997年   54篇
  1996年   61篇
  1995年   43篇
  1994年   44篇
  1993年   35篇
  1992年   40篇
  1991年   32篇
  1990年   41篇
  1989年   23篇
  1988年   1篇
  1987年   1篇
排序方式: 共有4025条查询结果,搜索用时 968 毫秒
501.
太湖流域3种氯酚类化合物水质基准的探讨   总被引:13,自引:7,他引:13  
按照美国地面水水质基准制定的程序和规范,筛选了太湖流域广泛存在的水生生物物种并收集了相应的基础毒性数据,探讨了五氯酚(PCP)、2,4-二氯酚(2,4-DCP)和2,4,6-三氯酚(2,4,6-TCP)在我国太湖地区的水生态基准的定值.同时采用蒙特卡罗构建物种敏感度分布(SSD)曲线和生态毒理模型方法预测了3种氯酚类化合物对太湖水生生物的急性基准浓度(CMC)和慢性基准浓度(CCC).结果表明,基于EPA规范方法和急慢性毒性比率得到的PCP、2,4-DCP和2,4,6-TCP3种氯酚类化合物的CMC值分别为25、908和594μg·L-1,CCC值分别为12、176和162μg·L-1;基于SSD曲线得到的CMC值分别为25、818和648μg·L-1,CCC值分别为6、75和198μg·L-1;基于生态毒理模型得到的CCC值分别为4、15和67μg·L-1,显示出3种方法得到的氯酚类化合物的CMC或CCC在同一个数量级上,但在数值上由生态毒理模型得出的CCC要小于其它两种方法,并且除PCP的急慢性基准值与美国EPA推出的水生态基准值相近外,其它两种氯酚类化合物的急慢性基准值均低于美国EPA推出的急慢性基准值.研究结果希望能为我国水质基准的制定提供一些有用的线索.  相似文献   
502.
基于过去20a全球森林植被中汞循环过程的相关研究,本文通过荟萃分析法阐明全球主要森林类型中植被汞分布特征及其影响因素.结果表明,汞在植被中浓度排序特征(以中值计)依次为凋落物(38.9ng/g)>叶片(24.1ng/g)>树根(18.5ng/g)>树皮(13.2ng/g)>树枝(12.0ng/g)>树干(3.1ng/g...  相似文献   
503.
典型四环素类抗生素的预测无效应浓度和风险评估   总被引:1,自引:0,他引:1  
四环素类抗生素是一类广谱抗生素,对生态环境存在潜在风险.本研究以四环素和土霉素为研究对象,根据欧盟现有化学物质风险评价技术指导文件(TGD),推导不同环境介质中四环素和土霉素的预测无效应浓度(PNEC),并采用风险商值(RQ)法对我国部分地区水质、淡水沉积物和土壤的暴露风险进行评估.结果 表明,我国水质、淡水沉积物及土壤中四环素的PNEC值分别为0.115 μg·L-1、423 μg·kg-1(湿质量)和57 μg· kg-1(湿质量);土霉素的PNEC值分别为4.93μg·L-1、1.78x104 μg·kg1(湿质量)和3.16×103μg·kg-1(湿质量).淡水沉积物风险区域主要集中在海河,土壤风险区域主要集中在山东省、四川省彭州市、辽宁省沈阳市等,部分区域点位存在潜在的生态风险.研究结论可为四环素类抗生素的生态环境风险评价提供科学依据.  相似文献   
504.
505.
城市中的大部分街谷都存在上游阻挡建筑.为考察阻挡建筑对街谷内空气环境的影响,通过数值计算方法研究分析了上游阻挡建筑对街谷内空气品质的影响作用,结果表明,在常规建筑间距范围内,街谷湍流强度、平均风速和风速波动范围均随着上游阻挡建筑间距增大而减小,这将导致当上游阻挡建筑与街谷建筑间距从15m增加到60m时,街谷空间污染物平均浓度增大36%,近地空间增大41%.因此,实际设计中街谷上游阻挡建筑与临街建筑间的距离不应过大.  相似文献   
506.
目前我国针对公众防护只有疏散这一单一方法,现实情况下往往疏散不利导致大量人员伤亡,而同时避难策略由于缺乏理论和评估依据,往往难以推广。为了更好的全面保障毒气泄漏事故周边居民的生命安全,提出一套避难场所的效果评估方法。该方法主要包括房屋气密性测试、屋外浓度场计算、屋内浓度场计算分析、屋内致死概率分析。并举出实际应用案例,展现该方法的多种数据支撑作用。最终给出该方法对于制定避难策略过程中关键影响因素。该方法的提出为高含硫气田、化工园区周边公众防护策略的实施,提高其周边居民安全具有重要意义。  相似文献   
507.
低磷浓度下鸟粪石结晶成粒及反应器流态模拟   总被引:1,自引:0,他引:1  
杨露  平倩  李咏梅 《中国环境科学》2016,36(4):1017-1026
为扩大鸟粪石(MAP)结晶成粒技术的应用范围,对低磷浓度下MAP成粒最优条件进行了研究.试验得出该技术应用的磷浓度应大于50mg/L,并在此基础上研究得到低磷浓度条件下MAP结晶成粒的最佳条件:pH 9.0,磷氮物质的量比1:8.此时生成的MAP平均粒径为0.56mm,总体积生长率为4.95cm3/h,纯度可达99.9%.为进一步优化流化床反应器中MAP成粒条件,利用CFD商用软件(Fluent 6.3)对反应器流态进行了模拟.结果表明:MAP流化床反应器的生长区能够形成明显的自下而上的水力分级,截面流速也较为均匀,有利于颗粒的生成,但沉淀区和进水区存在死区、涡流等不利条件.因此,有必要改进生长区和沉淀区的连接方式以及进水管的分布,以获得更为优质的MAP颗粒.  相似文献   
508.
以同时模拟未来大气CO2浓度和温度升高的田间开放式气候变化平台为依托,研究CO2浓度升高(CE)、升温(WA)以及两者同时升高(CW)对麦田土壤基础呼吸和微生物丰度、群落结构的影响.结果表明:CE对土壤基础呼吸没有影响,但是WA显著提高了土壤基础呼吸,在抽穗和成熟期分别增加了51.6%和38.5%.在分蘖期,土壤细菌和真菌丰度没有显著变化;而在抽穗和成熟期,CW和WA处理显著降低了真菌丰度,降低幅度分别达到32.1%~50.2%和32.0%~37.4%.通过对T-RFLP数据分析发现,CE、CW和WA处理对麦田土壤真菌和细菌群落结构没有显著影响,但是在一定程度上改变了古菌群落结构.与对照相比,CE处理真菌多样性提高了7.1%~8.2%,CW和WA处理真菌多样性分别降低了5.3%~13.5%和22.1%~33.6%;在分蘖和抽穗期,CE、CW和WA处理土壤细菌多样性比对照显著提高.  相似文献   
509.
为了解人工合成药物在生物炭上的吸附动力学特征及其浓度效应的影响,选择卡马西平(CBZ)为目标污染物。探讨不同初始质量浓度(2、4、25、50 mg·L~(-1))在不同裂解温度(200、300、500℃)下制备的生物炭上的吸附动力学特征。结果表明,双室一级动力学模型可以精确地描述CBZ在生物炭上的吸附动力学特征。CBZ的快室吸附对总体吸附的贡献随初始浓度的增大而减小,而慢室吸附贡献则增大。π-π作用可能对CBZ的吸附贡献较大。孔隙填充可以描述慢室吸附过程,可能是吸附速率的控制环节。  相似文献   
510.
西安市大气颗粒物数浓度分布及典型天气条件特征变化   总被引:2,自引:0,他引:2  
利用2013年3月到2014年12月期间西安市大气中0.25~32μm颗粒物监测数据和同期气象参数、散射消光系数等数据,分析了大气颗粒物数浓度分布及典型天气条件下变化特征.结果表明:采样期间西安市大气颗粒物平均数浓度为206.27个/cm3, 99%以上为<1μm的颗粒物数.大气颗粒物数浓度冬季最高,其次为秋、夏和春季,分别为267.66、231.31、141.82和135.77个/cm3.四季的数浓度低值均出现在18:00左右,之后数浓度上升,且晚上高于白天,冬季6:00左右达到峰值,夏季的昼夜差最小,秋季最大.春夏秋冬的大气颗粒物数浓度与散射消光系数的Pearson相关系数分别为0.756、0.702、0.411、0.377.大气颗粒物数浓度在沙尘天气发生前、中、后会升高、下降和再下降,霾天气出现前、后会升高和下降;高温干燥天气下,大气颗粒物数浓度相对较低;降雨对大气颗粒物的清除作用明显,但降雨后大气颗粒物数浓度又很快回升.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号