首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   319篇
  免费   12篇
  国内免费   26篇
安全科学   81篇
废物处理   36篇
环保管理   35篇
综合类   157篇
基础理论   9篇
污染及防治   25篇
评价与监测   10篇
社会与环境   1篇
灾害及防治   3篇
  2024年   1篇
  2023年   6篇
  2022年   8篇
  2021年   8篇
  2020年   4篇
  2019年   11篇
  2018年   4篇
  2017年   4篇
  2016年   6篇
  2015年   13篇
  2014年   36篇
  2013年   16篇
  2012年   24篇
  2011年   16篇
  2010年   12篇
  2009年   21篇
  2008年   13篇
  2007年   13篇
  2006年   19篇
  2005年   11篇
  2004年   12篇
  2003年   15篇
  2002年   11篇
  2001年   7篇
  2000年   6篇
  1999年   6篇
  1998年   6篇
  1997年   6篇
  1996年   3篇
  1995年   14篇
  1994年   8篇
  1993年   4篇
  1992年   4篇
  1991年   5篇
  1990年   4篇
排序方式: 共有357条查询结果,搜索用时 390 毫秒
281.
<正>201 5年4月1 1日,由中国再生资源回收利用协会主办的"绿色社区"服务项目在重庆市万科朗润园正式启动。201 5年"‘绿色社区’服务项目"再次获得民政部中央财政专项资金支持,将覆盖全国,并重点支持西南、西北部地区。通过整合社区再生资源回收站点、规范操作流程、借助大型回收机构的力量,对废旧纺织品、废电池、废旧手机、废玻璃等低值、危险的  相似文献   
282.
机械活化对CRT锥玻璃浸出动力学的影响   总被引:1,自引:0,他引:1  
通过研究CRT锥玻璃经机械活化后在硝酸溶液体系中浸出反应动力学规律,考察了机械球磨转速、浸出温度以及硝酸初始浓度对锥玻璃中铅的浸出效果影响。研究结果表明,锥玻璃经机械活化预处理后,反应活性显著增强,锥玻璃中铅浸出率大幅度提高。浸出反应的表观活化能和反应级数由109.4 kJ/mol和0.79降至54.3 kJ/mol和0.51。  相似文献   
283.
用水喷淋冷却是提高玻璃隔墙耐火极限的有效途径。首先确定了玻璃隔墙冷却专用喷头的设计目标,基于溅水盘的布水原理,通过溅水盘底部和背部的形状设计,确定了新型喷头的整体结构。然后搭建冷态试验平台进行布水规律试验。以钢化玻璃为冷却对象,在水压为0.05 MPa(表压)下,观察喷头距玻璃隔墙水平距离分别为0.1 m、0.3 m和0.5 m时,喷头在玻璃隔墙表面的布水现象,记录喷水密集和稀疏的区域,从喷洒半径、不同布水区域覆盖面积、水的利用率及水膜厚度等方面分析了布水规律,并与常用工程喷头的布水效果进行了比较。最后进行点火试验,在玻璃表面布置贴片热电偶,以汽油作为燃料,预燃60 s后,启动喷淋系统,分别测定了喷淋启动前后玻璃表面的温度,并选取玻璃迎火面布水密集区的一点计算冷却速率。结果表明:新型喷头的布水效果较好,与直立边墙型喷头相比,水量密集区域的覆盖面积增大了13.9%~19.5%,基本实现了玻璃隔墙表面的全覆盖;喷头冷却速率为1.1,冷却效果较好。  相似文献   
284.
选用几种常用玻璃色谱自动进样瓶(简称色谱瓶),包括硼硅玻璃、一级水解级玻璃和高白料玻璃色谱瓶,以及聚丙烯材质的色谱瓶,1%HNO3对色谱瓶浸提后用ICP-MS和HPLC-ICP-MS测定浸提液中砷的总量和形态,并研究了10%HNO3对色谱瓶的清洗效果;此外还探讨了温度及时间对玻璃色谱瓶中砷释放的影响.结果表明,玻璃色谱瓶中砷普遍存在,其中硼硅玻璃色谱瓶浸提液中砷浓度低于1μg·L-1,用10%HNO3酸泡24 h能够全部清除;而一级水解级玻璃和高白料玻璃色谱瓶浸提液中砷的浓度则高达45.67μg·L-1和70.25μg·L-1,酸泡24 h后也有较高的残留量,浓度分别为1.63μg·L-1和0.94μg·L-1.高温能促进玻璃色谱瓶中砷的释放;玻璃色谱瓶中砷的释放量随时间的延长而增加,但短时间内即达到平衡.形态分析结果表明,玻璃色谱瓶浸提液中砷形态为As(Ⅴ),没有检测到As(Ⅲ)、二甲基砷酸(DMA)和甲基砷酸(MMA).同时,聚丙烯色谱瓶浸提液中砷总量低于检测限,因而在进行砷形态测定时,建议使用聚丙烯色谱瓶或者经10%HNO3清洗后的硼硅玻璃色谱瓶,以避免玻璃色谱瓶中As(Ⅴ)的污染.  相似文献   
285.
鉴于我国缺乏非金属矿物制品工艺过程源成分谱(源谱)现状,采用稀释通道系统于2017年2~6月采集了玻璃制造、陶瓷制造和砖瓦制造共6个非金属矿物制品企业排放的PM_(10)和PM_(2.5)样品,对样品中的50种化学组分进行分析,构建相应的源谱,并对其特征进行研究.结果表明,玻璃制造源谱中以Na元素为主(质量分数介于9. 2%~18. 5%之间),陶瓷制造源谱中以Al、Si、Ca和Fe等地壳元素为主(质量分数在1. 7%~8. 7%之间),耐火砖和页岩砖源谱则是以SO_4~(2-)、NH_4~+等水溶性离子为主,SO_4~(2-)和NH_4~+质量分数分别介于36. 9%~48. 1%和7. 7%~17. 0%之间.不同企业因燃料类型、脱硫脱硝除尘方式不同会对源谱中的化学组分产生影响.源谱之间的分歧系数(CD)显示除页岩砖制造外,其余源谱2种粒径之间均较为相似,同粒径不同源谱间均存在差异,浮法玻璃与药用玻璃之间和2个陶瓷企业之间的CD值相对较小.使用R/U值比较源谱间不同组分的差异识别出Na和As元素可作为玻璃制造的标识组分,陶瓷制造可用Al和Ti来识别,NO_3~-和NH_4~+区分耐火砖,SO_4~(2-)和NH_4~+识别页岩砖.  相似文献   
286.
颗粒物特别是酸性细粒子对人体呼吸系统具有毒性效应,且颗粒物呈酸性还会加速许多气溶胶二次组分的形成,从而影响环境和气候.因此,本文在美国环保署(EPA)制定的颗粒物酸性标准测定方法的基础上,分别采用玻璃膜、石英膜、Teflon膜和复合纤维素酯滤膜(MCE膜)在实验室中进行平行提取测定,探讨各种膜对颗粒物酸性测定的影响,确定不同条件下加入H+量与提取H+量之间的标准曲线,评价不同采样膜对颗粒物酸性测定的准确性与精密度.结果显示,Teflon膜、MCE膜、石英膜、玻璃膜用于颗粒物酸性测定,其测定的精密度和准确性分别为9.4%和7.8%、9.9%和13.0%、15.6%和18.1%、17.8%和16.1%.玻璃膜用于H+的数据测定时,由于其标准曲线的斜率变化范围大(0.745~1.048),基质碱性物质背景值高,导致测定的潜在误差最大.  相似文献   
287.
采用溶胶凝胶法制备出纳米TiO2粉末、ITO导电玻璃和普通玻璃负载的纳米TiO2薄膜光催化刺。通过对乙酸的降解实验表明:镀膜4次的TiO2/ITO薄膜的催化活性大约是TiO2/giass薄膜的2倍,与等负载量的TiO2粉末相比也具有较高的光催化活性。使用10次后,TiO2/ITO薄膜和TiO2/glass薄膜的光催化活性分别降低了25%和12%。但经再生后,催化活性可恢复至90%左右。  相似文献   
288.
<正>这是一段非常重要的距离,一头是危险化学品,一头是人的生命和财产安全。8月12日23时34分,随着一声巨响,数十米高的灰白色蘑菇云瞬间腾起,红光满天,附近"火球"四溅。30秒后,更加剧烈的第二次爆炸来袭。200米外,跃进路派出所5层大楼被烧成空壳。2公里内,建筑物玻璃全部破碎,10公里内震感强烈。开发商数据显示,在爆炸点周围1公里范围内,合计入住户数超过5600户。人们不禁质问,为何居民楼与危险品仓库如此之近?如果有一个距离能够将危险与安全隔开,这个距离究竟应该有多远?被"跨越"的安全距离  相似文献   
289.
利用废液晶屏玻璃基板制备发泡材料工艺优化   总被引:1,自引:0,他引:1  
以主要成分为硼硅酸盐的废弃液晶屏玻璃基板为主要原料,加入石墨发泡剂,采用粉末烧结法制备发泡材料。通过DSC-TG、数码相机、万能试验机、抗压试验机等设备手段对其进行可行性分析及工艺优化。研究结果表明,以废弃液晶屏玻璃基板制备发泡材料具有可行性,烧成温度范围确定为850~950℃;配合料在925℃下保温20 min,成型压力控制在1~3 MPa可形成较均匀气孔;配合料的最佳工艺条件为烧成温度900℃,保温时间20 min,成型压力1 MPa,其主要性能体积密度达450 kg/m3,抗压强度达4.7 MPa,抗折强度达3.1 MPa,吸水率为1.0%。  相似文献   
290.
阴极射线管(cathode ray tube,CRT)玻璃附加值极低,毒性浸出实验表明CRT玻璃为危险废物,是当前我国电子垃圾处理处置中首要的必须解决的难题。废弃CRT玻璃安全处理处置的关键在于其含铅锥玻璃的处理处置。文章从锥玻璃的组成出发,探讨真空碳热还原除铅的可能性及可行性,计算表明真空碳热还原除铅完全可能,实验结果表明900℃,10 Pa下反应4 h铅的去除率可达93.53%,残余物中铅的质量分数仅为0.9%。该法为解决废弃危险电子垃圾CRT玻璃问题提供了新的思路,具有较强的应用价值。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号