首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   39篇
  国内免费   75篇
安全科学   9篇
废物处理   59篇
环保管理   3篇
综合类   151篇
基础理论   17篇
污染及防治   45篇
  2024年   5篇
  2023年   21篇
  2022年   21篇
  2021年   32篇
  2020年   21篇
  2019年   22篇
  2018年   9篇
  2017年   15篇
  2016年   9篇
  2015年   19篇
  2014年   21篇
  2013年   14篇
  2012年   19篇
  2011年   11篇
  2010年   4篇
  2009年   15篇
  2008年   4篇
  2007年   7篇
  2006年   5篇
  2005年   3篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
  1997年   3篇
排序方式: 共有284条查询结果,搜索用时 78 毫秒
211.
以聚乙烯吡咯烷酮作为改性剂,利用水热法合成了表面具有丰富氧空位的CuFeO2@PVP复合催化剂。通过XRD、FT-IR、SEM、TEM和EPR等方法证实了催化剂的成功合成及确定了催化剂的形貌和微观结构。采用UV-vis DRS、PL、EIS和IT等方法证实了CuFeO2@PVP比CuFeO2具有更好的光学性能及光电性能。不同体系下的降解实验结果表明,CuFeO2@PVP的光电催化活性比纯相CuFeO2有明显的提升,反应速率是纯相CuFeO2的1.79倍,去除率相比于单独的吸附、阳极氧化、光催化、电催化和电芬顿体系分别提高了87.9%、68.2%、67.3%、67%和9.8%,说明可见光、电场和异相催化剂间存在协同效应。进一步探究了催化剂投加量、电流密度、溶液pH、共存离子种类对异相光电芬顿体系降解氧氟沙星(OFX)的影响。结果表明,在最佳催化剂投加量为0.4 g/L、最佳电流密度为4 mA/cm2的条件下,CuFeO2  相似文献   
212.
电芬顿氧化法处理酸性橙Ⅱ模拟废水   总被引:2,自引:1,他引:1  
为分解酸性橙Ⅱ分子结构中的偶氮键和萘环,提高酸性橙Ⅱ废水的可生化性,采用电芬顿氧化法处理质量浓度为300mg/L的酸性橙Ⅱ模拟废水,研究了不同电流密度对电芬顿系统处理效率的影响.结果表明,在不同电流密度条件下,模拟废水ρ(CODCr)由377.8 mg/L快速降至276.9 mg/L时,消耗的电量分别为300 C(10.0 mA/cm2)、810 C(7.5 mA/cm2)、2 190 C(5.0mA/cm2)和1 710 C(2.5 mA/cm2),说明在高电流密度条件下,电芬顿反应器能够高效快速地分解酸性橙Ⅱ,同时消耗最低的电量.电芬顿系统处理出水的紫外可见光谱检测结果表明,在较高电流密度(7.5 mA/cm2)条件下,电芬顿系统仅需要10 min就能够基本完全分解酸性橙Ⅱ分子结构中的偶氮键和萘环,提高废水的可生化性.   相似文献   
213.
以活性艳蓝与大黄酸为蒽醌类目标污染物,分析了其经多相类芬顿预处理前后的可生化性及对活性污泥胞外聚合物、胞内物质、脱氢酶活性、脲酶活性、微生物群落的影响.Zahn-Wellens试验表明,活性艳蓝与大黄酸不能被活性污泥有效降解,而经过多相类芬顿预处理后,其呼吸曲线均在内源呼吸线以上,去除率分别达到了84.44%和86.72%.加入蒽醌类污染物后,活性污泥胞外聚合物的三维荧光光谱中,酪氨酸蛋白的吸收峰强度降低,胞内物质的红外光谱中氨基峰变宽;而经多相类芬顿预处理后,对活性污泥特性的影响不明显.加入活性艳蓝与大黄酸后,活性污泥脲酶相对活性仍保持在80%以上,但脱氢酶活性出现了降低,特别是加入大黄酸后,相对活性仅为67.5%左右.同时活性污泥的微生物群落发生了变化,Gram Positive分别由原来的40.15%增大到了47.72%和45.78%,而Gram Negative分别由原来的39.57%减少到37%和37.15%.但加入预处理后的蒽醌类污染物,未对活性污泥的微生物群落造成明显影响.  相似文献   
214.
利用正交试验对影响芬顿氧化深度处理垃圾渗滤液厌氧氨氧化出水的起始pH、 nFe2+/nH2O2、mH2O2/m CODcr、反应温度4种主要因素的最优组合开展研究。结果表明:4种因素均对芬顿氧化深度处理垃圾渗滤液厌氧氨氧化出水产生显著影响,影响顺序为起始pH>反应温度> mH2O2/m CODCr>nFe2+/nH2O2,起始pH对CODCr去除率影响极显著, mH2O2/m CODCr和nFe2+/nH2O2影响程度较为接近;4种影响因素最优组合为起始pH=4.0、nFe2+/nH2O2=1:3、mH2...  相似文献   
215.
采用Fenton试剂氧化—曝气生物滤池组合工艺对某制药厂常规生化处理后的废水进行深度处理.实验结果表明,Fenton试剂氧化的适宜操作条件为pH=5,ρ(H2O2)∶COD=1.5、n(H2O2)∶n(Fe2+)=2,反应时间为60min.经氧化处理后的废水再进入曝气生物滤池进行生化处理,最终出水COD小于80 mg/L,色度小于10倍,处理效果良好.  相似文献   
216.
采用溶剂热法合成了铁基金属有机骨架材料MIL-88B(Fe),将其作为类芬顿催化剂用于催化降解水中磺胺甲恶唑(SMX)。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、傅立叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)等对催化剂的结构和性能进行表征,并研究了H_2O_2浓度、催化剂投加量、溶液初始pH和污染物初始浓度等对SMX降解效果的影响。结果表明,在H_2O_2摩尔浓度为6.0mmol/L、催化剂投加量为0.2g/L、pH为4、SMX为5mg/L的优化反应条件下,MIL-88B(Fe)对SMX的降解率可达99%。在较宽的pH(4~6)范围内,MIL-88B(Fe)仍保持较好的催化活性,且5次循环使用后对SMX去除率仍可达95%以上。表明合成的MIL-88B(Fe)具有较高的催化活性和重复性能,是一种优良的非均相类芬顿催化剂。  相似文献   
217.
某中药制药企业原有污水处理站1座,由于产能扩大导致废水排放量增加,需对原有污水处理站进行扩建,其废水具有成分复杂、有机污染物种类多、浓度高,色度深、固体悬浮物SS浓度高、有一定的生物潜在毒性等特点,废水处理过程中存在成本高、出水不稳定等难点,是较难处理的高浓度有机废水。扩建的废水处理站采用“气浮沉淀+预曝气+水解酸化+厌氧处理+接触氧化+类芬顿深度处理”工艺,水质满足《中药类制药工业水污染物排放标准》(GB 21906—2008)中表2排放标准。结果表明:扩建后的污水处理站工艺技术先进、设备安全可靠、运行管理方便且实现和旧污水处理站协作共用,同时兼顾了能源回收利用和二次污染控制,达到了预期设计目标。  相似文献   
218.
通过向体系中添加天然有机物以提高污染物化学氧化降解效率的技术近年得到广泛关注。研究表明,有机物既可通过促进过渡金属还原、络合过渡金属等机制加速经典氧化反应进程,也可直接活化氧化剂构建高级氧化体系。基于典型有机官能团对污染物化学氧化降解过程的促进作用,金属-有机框架材料得以发展及应用。该文综述了促进氧化反应的常见有机物种类及作用机制,以期为化学氧化技术进一步发展提供参考依据。  相似文献   
219.
以某制药企业的二级出水为研究对象,对比了UV/TiO2、UV/H2O2、UV/TiO2/H2O2 3种高级氧化工艺的处理效果,利用自主设计的一体化光催化装置进行了连续动态试验,并通过凝胶渗透色谱(GPC)、傅里叶变换红外光谱(FT-IR)、三维荧光光谱(EEM)、斑马鱼急性毒性试验等方法研究了处理前后有机物特性和生物毒性的变化.结果表明,与UV/TiO2和UV/H2O2体系相比,UV/TiO2/H2O2芬顿体系对有机物的去除效果更好,当TiO2投加量为1 g·L-1,H2O2投加量为100 mg·L-1时,处理效果达到最佳.一体化光催化装置能够利用UV/TiO2/H2O2芬顿技术快速高效地降解二级出水中的有机污染物,反应30 min时COD去除率达到50%以上.经UV/TiO2/H2O2深度处理后,废水中的大分子有机物分解转换为小分子,有机物中的不饱和结构明显减少,腐殖质等溶解性有机物基本降解完全.毒性试验结果表明,该二级出水的生物毒性经深度处理后显著降低,对斑马鱼胚胎不存在致畸致死效应.  相似文献   
220.
芬顿试剂和湿式过氧化氢氧化法处理乳化液废水研究   总被引:22,自引:1,他引:22  
研究了常温下芬顿试剂氧化乳化液废水的特性,当进水COD为50540mg·L-1,常温下芬顿试剂氧化的最佳条件为H2O2/COD的质量浓度比为2.0,Fe2 /COD的质量浓度比为0.075时,其COD去除约91%;常温下芬顿试剂氧化乳化液废水时存在明显的诱导期,用表观一级模型分别解释了快速和慢速的反应过程.另外,进一步研究了以H2O2替代部分或全部空气即湿式过氧化氢氧化工艺的氧化能力,湿式双氧水氧化可显著降低亚铁投量(Fe2 投量为50mg·L-1),150℃时COD去除率为82.4%;以少量的双氧水(H2O2/COD=0.05)为引发剂,在120℃下COD去除率达52.0%,催化效果显著.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号