首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   39篇
  国内免费   75篇
安全科学   9篇
废物处理   59篇
环保管理   3篇
综合类   151篇
基础理论   17篇
污染及防治   45篇
  2024年   5篇
  2023年   21篇
  2022年   21篇
  2021年   32篇
  2020年   21篇
  2019年   22篇
  2018年   9篇
  2017年   15篇
  2016年   9篇
  2015年   19篇
  2014年   21篇
  2013年   14篇
  2012年   19篇
  2011年   11篇
  2010年   4篇
  2009年   15篇
  2008年   4篇
  2007年   7篇
  2006年   5篇
  2005年   3篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
  1997年   3篇
排序方式: 共有284条查询结果,搜索用时 312 毫秒
71.
为了有效去除废水中的有机污染物和实现赤泥(RM)的再利用,利用废弃活性炭(WAC)作为碳源,通过还原焙烧-磁选二步法制备了赤泥基零价铁(ZVI/RM)材料作为类芬顿催化剂催化氧化废水中常见的有机污染物罗丹明B (RhB)和磺胺嘧啶(SD).材料表征结果表明,零价铁均匀分布在材料上,且材料具有明显的介孔结构.当初始pH为...  相似文献   
72.
金属有机骨架材料MIL-101(Fe)具有一定的催化活性,为进一步提升其催化性能,利用金属掺杂和柠檬酸调节对其进行改性,制备得到Cu/Ce-MIL-101(Fe)和Cu/Ce-MIL-101(Fe)-N两种改性材料。通过X射线衍射(XRD)、傅立叶变换红外光谱(FT-IR)、场发射扫描电镜(SEM)、氮气吸附脱附测试及X射线光电子能谱(XPS)对材料进行表征。结果显示,改性后催化剂具有相似的骨架结构和化学键组成,活性位点的结合能减少0.2~0.3 eV。金属掺杂和柠檬酸调节改性后Cu/Ce-MIL-101(Fe)-N平均孔径增大至14.932 nm。采用非均相芬顿反应研究降解时间和pH对罗丹明B降解性能的影响,结果表明,在温度为25℃,罗丹明B初始质量浓度为24 mg/L,溶液pH为4且Cu/Ce-MIL-101(Fe)-N投加量为0.2 g/L,3%(体积分数) H2O2投加量为60 mL/L,反应60 min时,罗丹明B降解率高达98%。改性前后催化剂降解过程均更符合准一级动力学模型。其中,Cu/Ce-MIL-101(Fe)-N能够在60...  相似文献   
73.
文章以啤酒酵母为原料制备了载钴活性炭(Co/AC)和活性炭(AC,对照材料),用于强化电芬顿处理亚甲基蓝(MB)废水,对体系中存在的吸附和催化降解耦合作用进行了研究。独立吸附反应中,Co/AC对MB的吸附动力学过程和等温吸附过程分别符合准二级动力学模型和Langmuir方程,其理论饱和吸附容量为232.48 mg/g,低于AC(399.79 mg/g)。电芬顿反应中,Co/AC催化对MB和TOC去除率分别为99.05%、88.57%,高于AC催化的95.95%、68.87%,以及硫酸亚铁催化的35.53%、32.37%。Co/AC优异的催化降解MB性能主要源于其具有更强的促进·OH生成的能力。Co/AC对MB的吸附和催化降解耦合作用过程符合构建的Langmuir-first-order动力学方程。  相似文献   
74.
针对高浓度液晶废水可生化性差及难降解的问题,设计了芬顿-SBR-微波热解联合工艺。研究了芬顿-SBR-微波热解联合工艺实验条件;分析了SBR工艺运行稳定性;探讨了联合工艺处理液晶废水的反应机理。结果表明,在最佳实验条件下,芬顿-SBR联合工艺去除液晶废水COD高达99.6%,MLSS和SVI分别稳定在4 500 mg·L~(-1)和65%左右,出水COD为450~490 mg·L~(-1),出水水质满足《污水排入城镇下水道水质标准》(GB/T31962-2015)中B级标准。微波热解可把芬顿预处理产生的铁泥转热解成高附加值的氧化铁;芬顿预处理可将大分子有机物降解为小分子有机酸,提高出水的可生化性,为后续SBR的稳定运行提供保证。  相似文献   
75.
为了考察多相芬顿-活性炭工艺对饮用水中微生物消毒效果的影响,采用中试对活性炭工艺与多相芬顿-活性炭工艺进行了对比研究。该中试对水中溶解性有机物(DOC)、总细菌16S rRNA、三磷酸腺苷(ATP)及胞外多聚物(EPS)含量与性质进行了分析。结果表明,多相芬顿-活性炭工艺能够将出水DOC浓度控制在(0.90±0.11) mg·L~(-1),并使得EPS减少83.2%,降低EPS中蛋白质/多糖(PN/PS)比值,其凝聚性明显下降,在相同氯浓度投加情况下水中微生物16S rRNA基因拷贝数去除量提高了3.5个对数量级,ATP浓度降低为0.016 nmol·L~(-1)。因此,多相芬顿-活性炭工艺明显提高了对有机物的去除能力,显著降低EPS中蛋白质的含量,使得微生物凝聚性变差,微生物更加容易被消毒剂灭活,该工艺强化了饮用水消毒效果。  相似文献   
76.
日光辐照H_2O_2-草酸铁氧化法处理棉浆粕废水   总被引:1,自引:0,他引:1  
采用日光辐照H_2O_2-草酸铁氧化法处理棉浆粕废水.最佳工艺条件为:正午日光辐照10 min,废水pH5.00,废水体积150 mL,H_2O_2加入量2.0 mL,Fe_SO_4·7H_2O加入量0.600 0 g,K_2C_2O_4·H_2O加入量0.290 9 g.在此条件下COD由初始时的3 200 mg/L降至608 mg/L,COD去除率可达81.0%.采用气相色谱-质谱联用仪对处理前后的废水进行分析,实验结果表明该法可有效去除废水中大部分有机污染物.  相似文献   
77.
以硅藻土为载体,采用溶胶-凝胶法引入金属氧化物SnO2和Fe2O3,制备了二元氧化物复合型SO42-/SnO2-Fe2O3-硅藻土固体酸催化剂。利用该催化剂与H2O2构成非均相类Fenton试剂氧化体系,催化H2O2产生氧化能力极强的·OH,用于处理实际翠蓝废水和模拟亚甲基蓝废水。催化剂的最佳制备条件为:H2SO4溶液的浓度3 mol/L,浸渍时间2.0 h,焙烧温度550 ℃,焙烧时间3.5 h,焙烧方式为随炉升降温。实验结果表明:采用在最佳工艺条件下制得的催化剂,处理实际翠蓝废水COD去除率可达79.5%、脱色率达99.6%;处理模拟亚甲基蓝废水COD去除率可达83.1%、脱色率达99.6%。  相似文献   
78.
胡绍伟  王飞  陈鹏  王永  徐伟 《化工环保》2014,34(4):344-347
采用内电解—Fenton氧化—絮凝沉淀的化学集成技术预处理焦化废水,优化了各工段的运行参数。实验结果表明:在钢铁铁屑与活性炭的体积比为1∶1的条件下,内电解工段的优化参数为进水pH 2.6~3.1、HRT=1.0 h;Fenton氧化工段的优化参数为Fe2+加入量200 mg/L、H2O2加入量1 000 mg/L、进水pH 3.0左右、反应时间1.0 h;絮凝沉淀工段的设定参数为进水pH 9.5~10.0、聚丙烯酰胺加入量1 mg/L、静置沉降0.5 h。在上述工艺条件下,该集成技术对废水的总COD去除率大于55%,处理后的废水BOD5/COD大于0.28,不添加稀释新水即可进入后续生化处理系统。该工艺占地面积小、系统结构简单、易于工业化,废水预处理成本为4~5元/t。  相似文献   
79.
零价铁与双氧水异相Fenton降解活性艳橙X-GN   总被引:1,自引:0,他引:1  
采用Fe0与H2O2构成异相Fenton体系降解偶氮染料活性艳橙X-GN,考察了初始pH、H2O2和Fe0投加量、温度等对反应过程的影响。实验结果表明,在初始pH值为3.0、Fe0投加量为0.8 g/L、H2O2投加量为5 mmol/L和反应温度30℃的条件下,反应60 min后活性艳橙降解率达到96.2%。Fe0与H2O2投加量都存在一个最佳范围,当Fe0与H2O2浓度大于0.8 g/L和5 mmol/L时,羟基自由基会通过其他方式消耗,致使活性艳橙降解率下降。酸性条件和提高温度均有利于反应的进行。反应符合准一级动力学,表观反应速率常数k为0.064 min-1(30℃),反应活化能为80.62 kJ/mol。UV-Vis光谱扫描表明,反应过程中活性艳橙的发色基团及苯环结构均被破坏。  相似文献   
80.
徐文倩 《化工环保》2013,33(4):316-320
采用混凝-Fenton试剂氧化或混凝-臭氧氧化两种氧化技术预处理上海某医药集团原料药废水。实验结果表明:采用聚合氯化铝(PAC)和聚丙烯酰胺(PAM)复合混凝处理该废水,在混凝pH为9.5、混凝时间1h、PAC和PAM加入量分别为600mg/L和12mg/L时,COD的去除率可达23%;混凝后废水再分别用臭氧氧化和Fenton试剂氧化处理,臭氧氧化明显比Fenton试剂氧化经济有效,在臭氧氧化pH为10、臭氧加入量为15g/L、臭氧氧化时间为1h的条件下,废水COD去除率为27.8%,废水BOD5/COD明显提高,为后续生化处理提供了良好的条件。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号