首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   351篇
  免费   20篇
  国内免费   48篇
安全科学   20篇
废物处理   1篇
环保管理   68篇
综合类   210篇
基础理论   64篇
污染及防治   2篇
评价与监测   4篇
社会与环境   25篇
灾害及防治   25篇
  2024年   5篇
  2023年   19篇
  2022年   27篇
  2021年   21篇
  2020年   14篇
  2019年   10篇
  2018年   9篇
  2017年   11篇
  2016年   14篇
  2015年   9篇
  2014年   28篇
  2013年   17篇
  2012年   24篇
  2011年   25篇
  2010年   20篇
  2009年   22篇
  2008年   23篇
  2007年   15篇
  2006年   17篇
  2005年   13篇
  2004年   14篇
  2003年   6篇
  2002年   6篇
  2001年   9篇
  2000年   12篇
  1999年   3篇
  1998年   5篇
  1996年   8篇
  1995年   1篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
  1986年   2篇
排序方式: 共有419条查询结果,搜索用时 31 毫秒
91.
2019年6月24日拉萨市出现了30.8℃的高温,创历史新高.为了更好的了解拉萨市气候变暖的机理以及评估该区域未来气候的变化状况,本文基于拉萨市自动气象站近49年的观测数据,采用线性趋势法、Mann-Kendall (M-K)突变检验、小波分析、R/S分析等方法深入研究了多时间尺度上气温的时空演变特征.结果 显示:(a...  相似文献   
92.
基于青藏高原12个城市2015~2021年的大气污染监测数据和气象数据,分析了青藏高原地表臭氧(O3)时空分布格局. 采用KZ滤波将O3-8h原始序列分解为不同时间尺度的分量,并利用气象变量的多元线性回归定量地分离出气象和排放的影响. 结果表明,2015~2021年青藏高原12个城市地表ρ(O3-8h)均值为78.7~156.7 μg·m-3,O3浓度超标率(国家二级标准)为0.7%~1.5%. O3-8h月浓度变化呈单峰倒“V”型和多峰“M”型,浓度峰值出现在4~7月,谷值多出现在7月、 9月和12月. 经KZ滤波分解的O3-8h短期、季节和长期分量对12个城市O3-8h原始序列总方差的贡献率分别为29.6%、 51.4%和9.1%. 从整个区域看,2015~2017年气象条件对青藏高原O3降低不利,使得O3-8h长期分量升高0.2~2.1 μg·m-3. 2018~2021年气象有利于O3浓度降低,导致O3-8h长期分量降低0.4~1.1 μg·m-3. 气象条件增加了阿里、拉萨、那曲、林芝、昌都、海西和西宁的O3-8h长期分量,其平均贡献率为30.1%. 气象条件降低了日喀则和果洛的O3-8h长期分量,贡献率分别为359.0%和56.5%. 阿里、日喀则、那曲、海西和西宁O3-8h长期分量的上升可能是由于PM2.5长期分量快速下降[4.04 μg·(m3·a)-1]导致.  相似文献   
93.
为深入研究青藏高原古滑坡复活机理,以甘肃舟曲县东山镇牙豁口滑坡为对象,通过对INSAR监测数据和现场地表监测数据的深入分析,探讨了舟曲县东山镇牙豁口滑坡的滑动变形阶段,并揭示其复活驱动机理.鉴于牙豁口滑坡最先启动块体高陡的后壁和侧壁失稳下滑形态可知,降雨可能只是一个诱发因子,真正触发牙豁口滑坡复活的根本原因是滑坡后缘岩...  相似文献   
94.
中国科学院寒区旱区环境与工程研究所通过研究发现:2004年中国北方沙尘暴呈增加之势,主要与太阳黑子活动周期变长、青藏高原地面加热场强度减弱等原因有关:  相似文献   
95.
青藏高原东北部气候变化的异质性及其成因   总被引:1,自引:1,他引:1  
利用1961-2016年西宁等青藏高原东北部13个气象台站气温、降水等气象资料以及国家气候中心发布的南海季风指数、西伯利亚高压指数等大气环流特征量数据,分析近56年来气候变化与高原主体的差异性及其可能的气候成因。研究表明:近56年来青藏高原东北部气候变暖趋势十分显著,年平均气温气候倾向率高达0.39 ℃/10 a,呈现出三次明显的阶梯性增高态势,并于1994年前后发生了由冷到暖的突变,同时具有明显的空间差异性;年降水量及四季降水量均没有明显变化趋势,虽然经历了2002年左右由少到多的变化,但并未出现明显突变,年降水量具有3年、5年的准周期,而年降水日数微弱减少,降水强度呈增加趋势;该区域气候变化的年际波动主要受到东亚季风、高原季风和南海季风的年际振荡及其相互作用的影响,而西风环流的作用并不明显,植被覆盖的恢复既是对2002年以来降水量增加的具体反应,同时也对于气候变暖趋势起到了一定的缓和作用。  相似文献   
96.
青藏高原东南部自然带垂直分布的数学模型及生态学研究   总被引:5,自引:1,他引:5  
采用三维数学模型研究了青藏高原东南部自然带垂直分布规律,影响垂直带分布的主要因子是热量条件。常绿阔叶林带、针阔叶混交林带、山地暗针叶林带和高山灌丛草甸带上限的温暖指数、寒冷指数分别为65℃·月、43℃·月、16℃·月和10℃·月及-10℃·月、-24℃·月、-55℃·月和-75℃·月;其可能蒸散值分别为620mm、500mm、410mm和300mm。  相似文献   
97.
川西北地区地处我国内陆,属青藏高原的一部分。大部分地区海拔在3000—4000 m,气候严寒,是藏族等少数民族聚集区。区域具有经济上东向性和社会文化传统上西向性的二元结构特点,拥有畜牧业、林业、矿产、能源、旅游等资源优势,具有巨大开发潜力,但目前经济发展水平低。今后的开发,必须正确处理好现代化与民族传统的关系,建立起有区域特色的支柱产业、辅助产业和基础产业,建设商品生产基地,理顺投资和项目建设顺序。区域开发应以东部为基地,以现有城镇为依托,逐步向面上扩展。同时,应致力于生态建设,建设长江上游自然保护区。  相似文献   
98.
1961—2017年青藏高原极端降水特征分析   总被引:1,自引:0,他引:1  
基于青藏高原78个气象站点的逐日降水数据,采用百分位阈值法确定极端降水阈值,计算极端降水指数并分析其时空分布特征,以期为区域气候变化预测及防灾减灾对策的制定提供参考。结果表明:(1)1961—2017年青藏高原年降水量表现出上升趋势,上升速率为8.06 mm/10 a,多年平均降水量达472.36 mm。78个站点的年降水量倾向率最小值为-25.46 mm/10 a,最大值为43.02 mm/10 a,有15.38%的站点降水在下降,较为集中地分布在高原的东部和南部,其余84.62%的站点降水量在上升。(2)青藏高原各站点极端降水阈值的平均值为23.11 mm,取值范围为7.84~51.90 mm。高值中心出现在横断山区的贡山和木里,低值中心出现在柴达木盆地及昆仑山北翼区。(3)青藏高原各站点的极端降水量、极端降水日数和极端降水贡献率均表现出了明显的上升趋势,极端降水强度虽然也在上升但趋势并不明显,表明青藏高原极端降水量的上升并非是极端降水的强度引起的,而是由极端降水频次的上升引起的。柴达木盆地的极端降水量和极端降水日数虽然并没有表现出高值水平,但该地区的极端降水贡献率却表现出较高水平,表明该区域虽然降水量较少,但是降水往往以极端降水的形式产生。  相似文献   
99.
采用紫外吸收光谱和GC-MS扫描解析,对西藏东南部湖泊巴松措表层沉积物中的腐殖酸和富里酸特性进行研究.结果表明,巴松措表层沉积物中腐殖酸和富里酸的紫外吸光度在200~400nm间较400~800nm间明显增加,富里酸在270nm附近出现弱而钝的双肩吸收,表明其中存在芳香环结构.腐殖酸和富里酸在254nm处的吸光度普遍偏低,表明其中难降解有机物的含量较低.通过紫外吸收特征值(A465/A665)分析得出,巴松措表层沉积物腐殖酸和富里酸的腐殖化程度较低.在人类活动频繁的区域,腐殖酸和富里酸的腐殖化程度相对于其他区域较高.根据GC-MS扫描解析,匹配度较高物质的分子式为C15H24,分子量为204,其结构中都含有芳香环,且含有脂肪链、不饱和烃、甲基、亚甲基、异丙基、环丙烷、己烷和萘等结构,均属于芳香族化合物,与紫外吸收光谱的分析结果一致.匹配度较高的物质推断属于类色氨酸.  相似文献   
100.
利用孢粉记录追踪过去人类活动历史及其环境效应的研究较少。本文选取青藏高原28处地层化石孢粉序列,采用直接提取和集成方法获得568条具有年代的伴人孢粉(禾本科、石竹科、杨属、十字花科、委陵菜属、车前属、紫菀属、藜科、狼毒属)数据,经标准化处理后建立高原4个分区的人类活动指数。同时结合本区已有研究资料,探讨了中晚全新世以来的人类活动历史。研究表明:(1)Ⅰ区东北区,6.0~5.3 ka B.P.早期人类已开始活动,但低水平的生产方式对植被影响较弱;5.3~4.5 ka B.P.人类活动得到扩展,环境效应开始显现;4.5~3.5 ka B.P.人类活动强度明显增强,加剧了对植被的破坏;3.5~2.0 ka B.P.随着人类活动的进一步加强,导致过度放牧、森林面积减少及风沙活动增强。(2)Ⅱ区东南区,5.0 ka B.P.左右人类活动的环境效应开始显现;4.5~3.5 ka B.P.植被受人为干扰显著;3.5~2.0 ka B.P.人类活动扩张至高海拔地区,对植被影响范围随之扩大;(3)Ⅲ区西南区,5.7~4.5 ka B.P.农业生产活动开始且得到发展,环境效应逐渐凸出;4.5~2.0 ka B.P.人类活动进一步增强,对植被影响亦进一步加剧;(4)Ⅳ区西北无人区,受资料所限并未充分讨论,但已有研究表明,全新世早中期本区已有人类进行狩猎采集活动。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号