首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   526篇
  免费   4篇
  国内免费   176篇
安全科学   21篇
废物处理   15篇
环保管理   57篇
综合类   357篇
基础理论   59篇
污染及防治   170篇
评价与监测   18篇
社会与环境   9篇
  2023年   13篇
  2022年   21篇
  2021年   23篇
  2020年   29篇
  2019年   33篇
  2018年   24篇
  2017年   29篇
  2016年   26篇
  2015年   42篇
  2014年   23篇
  2013年   45篇
  2012年   19篇
  2011年   50篇
  2010年   21篇
  2009年   39篇
  2008年   30篇
  2007年   39篇
  2006年   25篇
  2005年   21篇
  2004年   17篇
  2003年   15篇
  2002年   16篇
  2001年   23篇
  2000年   22篇
  1999年   11篇
  1998年   11篇
  1997年   11篇
  1996年   6篇
  1995年   4篇
  1994年   5篇
  1993年   5篇
  1992年   8篇
排序方式: 共有706条查询结果,搜索用时 15 毫秒
81.
A study was carried out in order to compare the environmental performance of two different types of adsorbents in removing arsenic (As) from wastewater. A FeCl3-based adsorbent and a poly-Fe-based adsorbent were first synthesized and their abilities in adsorbing As from wastewater were investigated in terms of the adsorption density and the rate of adsorption. Here, it should be noted that the main material being used in the synthesis of the poly-Fe-based adsorbent was a waste product, known as polyferric sulfate or poly-Fe in short, which exits the manufacturing process of titanium dioxide.Both adsorbents were then compared in the context of life-cycle assessment (LCA). In other words, the experimental results (i.e. the value of the adsorption density and the rate of adsorption) were input into the LCA model in order to assess the environmental performance of each adsorbent in removing arsenic. An estimate for the environmental burden of each option was finally calculated as the sum of the depletion of abiotic resources (ADP), the global warming potential (GWP), the acidification potential (AP), the photo-oxidant formation potential (POCP), the eutrophication potential (EP), and the human toxicity potential (HTP). The main finding of this study was that the adsorption of arsenic by using the poly-Fe-based adsorbent is more attractive treatment option in the environmental protection point of view than the adsorption by using the FeCl3-based adsorbent, which generates a relatively larger environmental burden.  相似文献   
82.
The present study investigates the immobilization of Pb(II), Cd(II) and Ni(II) on clays (kaolinite and montmorillonite) in aqueous medium through the process of adsorption under a set of variables (concentration of metal ion, amount of clay, pH, time and temperature of interaction). Increasing pH favours the removal of metal ions till they are precipitated as the insoluble hydroxides. The uptake is rapid with maximum adsorption being observed within 180 min for Pb(II) and Ni(II) and 240 min for Cd(II). A number of available models like the Lagergren pseudo first-order kinetics, second-order kinetics, Elovich equation, liquid film diffusion and intra-particle diffusion are utilized to evaluate the kinetics and the mechanism of the immobilization interactions. Two isotherm equations due to Langmuir and Freundlich showed good fits with the experimental data. Kaolinite and montmorillonite have considerable Langmuir monolayer capacity with respect to Pb(II), Cd(II) and Ni(II), the values being in the range of 6.8-11.5mg/g (kaolinite) and 21.1-31.1mg/g (montmorillonite). The Freundlich adsorption capacity follows a similar order. The thermodynamics of the immobilization process indicates the same to be exothermic with Pb(II) and Ni(II), but endothermic with Cd(II). The interactions with Pb(II) and Ni(II) are accompanied by decrease in entropy and Gibbs energy while the endothermic immobilization of Cd(II) is supported by an increase in entropy and an appreciable decrease in Gibbs energy. The results have established good potentiality for kaolinite and montmorillonite to remove heavy metals like Pb(II), Cd(II) and Ni(II) from aqueous medium through adsorption-mediated immobilization.  相似文献   
83.
The present study investigated the effectiveness of an inexpensive and ecofriendly alumino silicate clay mineral, sericitic pyrophyllite, as an adsorbent for the possible application in the removal of some divalent toxic metal cations such as Pb(2+), Cu(2+)and Zn(2+) from aqueous systems. Batch scale equilibrium adsorption studies were carried out for a wide range of initial concentration from 24.1 to 2410mumolL(-1) for lead, 78.65 to 7865mumolL(-1) for copper and 76.45 to 7645mumolL(-1) for zinc solutions. The removal of Pb(2+) was almost complete at low concentration (maximum lead removal capacity, LRC, 32mg of lead/g of pyrophyllite) with 10gL(-1) of adsorbent in a 30min equilibration time. The effects of temperature on adsorption of heavy metal ions were studied. The applicability of the Langmuir, Freundlich and Dubinin-Radushkevich adsorption models in each case of lead, copper and zinc adsorption was examined separately at different temperatures. The adsorption process was found to be endothermic and the Freundlich adsorption model was found to represent the data at different temperatures more suitably.  相似文献   
84.
In this article, the technical feasibility of the use of activated carbon, synthetic resins, and various low-cost natural adsorbents for the removal of phenol and its derivatives from contaminated water has been reviewed. Instead of using commercial activated carbon and synthetic resins, researchers have worked on inexpensive materials such as coal fly ash, sludge, biomass, zeolites, and other adsorbents, which have high adsorption capacity and are locally available. The comparison of their removal performance with that of activated carbon and synthetic resins is presented in this study. From our survey of about 100 papers, low-cost adsorbents have demonstrated outstanding removal capabilities for phenol and its derivatives compared to activated carbons. Adsorbents that stand out for high adsorption capacities are coal-reject, residual coal treated with H3PO4, dried activated sludge, red mud, and cetyltrimethylammonium bromide-modified montmorillonite. Of these synthetic resins, HiSiv 1000 and IRA-420 display high adsorption capacity of phenol and XAD-4 has good adsorption capability for 2-nitrophenol. These polymeric adsorbents are suitable for industrial effluents containing phenol and its derivatives as mentioned previously. It should be noted that the adsorption capacities of the adsorbents presented here vary significantly depending on the characteristics of the individual adsorbent, the extent of chemical modifications, and the concentrations of solutes.  相似文献   
85.
In this paper, Loofa egyptiaca (LE), an agricultural plant cultivated in Egypt, was used to prepare low-cost activated carbon (LEC1 and LEC2) adsorbents. The adsorbents (LE, LEC1 and LEC2) were evaluated for their ability to remove direct blue 106 dye from aqueous solutions. Batch mode experiments were conducted using various parameters such as pH, contact time, dye concentration and adsorbent concentration. The surface chemistry of LE, LEC1 and LEC2 was analyzed by scanning electron microscopy (SEM). The experimental data were examined using Langmuir, Freundlich, Temkin and Harkins–Jura isotherms. The results showed that the adsorption of direct blue 106 was maximal at the lowest value of pH (pH = 2). Removal efficiency was increased with an increase in dye concentration and a decrease in amount of adsorbent. Maximum adsorption capacity was found to be 57.14, 63.3 and 73.53 mg/g for LE, LEC1 and LEC2 respectively. Kinetics were also investigated using pseudo-first-order, pseudo-second-order and intra-particle diffusion models. The experimental data fitted very well with the pseudo-first-order and pseudo-second-order kinetic models. The results indicate that LE, LEC1 and LEC2 could be employed as adsorbents for the removal of direct blue dye from aqueous solutions.  相似文献   
86.
臭氧-生物活性炭技术在微污染饮用水处理中的应用   总被引:17,自引:0,他引:17  
于万波 《环境技术》2003,21(2):11-15
通过研究国内外臭氧—生物活性炭工艺的发展现状和应用实践,指出了该项技术在应用中体现出的优越性,并提出了此项技术在应用中存在的问题,部分地介绍了提高此项技术应用水平的措施。研究表明,臭氧—生物活性炭工艺在处理微污染饮用水将会受到重视和广泛地推广应用,同时也对今后的研究方向提出了相应的观点。  相似文献   
87.
The present study deals with the adsorption of Brilliant Green (BG) on rice husk ash (RHA). RHA is a solid waste obtained from the particulate collection equipment attached to the flue gas lines of rice husk fired boilers. Batch studies were performed to evaluate the influences of various experimental parameters like initial pH (pH0), contact time, adsorbent dose and initial concentration (C0) on the removal of BG. Optimum conditions for BG removal were found to be pH0 approximately 3.0, adsorbent dose approximately 6 g L(-1) of solution and equilibrium time approximately 5 h for the C0 range of 50-300 mg L(-1). Adsorption of BG followed pseudo-second-order kinetics. Intra-particle diffusion does not seem to control the BG removal process. Equilibrium isotherms for the adsorption of BG on RHA were analyzed by Freundlich, Langmuir, Redlich-Peterson (R-P), Dubnin-Radushkevich (D-R), and Temkin isotherm models using a non-linear regression technique. Langmuir and R-P isotherms were found to best represent the data for BG adsorption onto RHA. Adsorption of BG on RHA is favourably influenced by an increase in the temperature of the operation. Values of the change in entropy (DeltaS0) and heat of adsorption (DeltaH0) for BG adsorption on RHA were positive. The high negative value of change in Gibbs free energy (DeltaG0) indicates the feasible and spontaneous adsorption of BG on RHA.  相似文献   
88.

The effect of one organic amendment consisting of an urban waste compost (UWC) was assessed on the sorption properties of the herbicide 2,4-D on four soils of different physicochemical characteristics. The soils chosen were a Typic Haphorthod (ST), a Typic Endoaquept (SR), an Entic Pelloxerert (TO), and a Typic Eutrochrept (AL). Adsorption experiments were performed on the original soils, and on mixtures of these soils with UWC at a rate of 6.25% (w/w). These mixtures were used just after preparation, and after aging for 8 and 25 weeks. 2,4-D adsorption was the highest on ST soil, whereas the lowest adsorption was for SR soil. This behavior is related to the high amount of organic matter (OM) and amorphous iron and aluminum oxides content on soil ST, whereas soil SR had the lowest OM content and specific surface area of the soils of this study. Addition of exogenous OM to soils caused an increase in the 2,4-D adsorption by three of the soils treated with UWC, with the only exception being ST soil, due to an observed decrease in its specific surface area. The adsorbed amounts of the herbicide on aged organic fertilized soils diminished in three of the amended soils, but was still greater than on unamended soils. In contrast, the ST soil showed the largest adsorption for unamended soil.  相似文献   
89.
The adsorption of some heavy metals onto the walls of harvested, washed, and dried non-living biomass cells of different Pseudomonas strains was studied at optimum experimental conditions using a simplified single component system. The Langmuir adsorption model was found to be a suitable approach to describe the system via multi-step processes. Isotherms measured at 30.0°C and pH 5.5 with [M]total = 10-100 mM for tight, reversible Cr6+(aq), Ni2+(aq), Cu2+(aq) and Cd2+(aq) binding by the cell walls of the investigated biomass fit the Langmuir model and give the pH-independent stoichiometric site capacities νi and equilibrium constants Ki for metal binding at specific biomass sites i = A, B, C, and D. Tight binding sites A, B, and D of the non-living biomass are occupied by CrVI, sites A and C by NiII, sites A and D by CdII, and only site B by CuII. It is concluded that νi is a stoichiometric parameter that is independent of the magnitude of Ki for binding site i and that the studied heavy metals selectively and tightly bind at different biomass sites.  相似文献   
90.
Heterogeneous photocatalytic reaction has been generally applied for degradation of toxic contaminants. Degradations of a compound using the same kind of catalyst that was synthesized differently are commonly found in literature. However, the reported degradation intermediates are normally inconsistent. This issue is especially important for the degradation of toxic compounds because intermediates may be more toxic than their parent compounds and understanding the reason is necessary if appropriate catalysts are to be designed. This work systematically compares the photocatalytic degradation of diuron, a toxic recalcitrant herbicide, on two forms of zinc oxide (ZnO), i.e., conventional particles with zinc- and oxygen-terminated polar surfaces as the dominating planes, and nanorods with mixed-terminated nonpolar surfaces. Experimental and theoretical results indicate that both the rate of reaction and the degradation pathway depend on the adsorption configuration of diuron onto the surface. Diuron molecules adsorb in different alignments on the two surfaces, contributing to the formation of different degradation intermediates. Both the aliphatic and aromatic sides of diuron adsorb on the polar surfaces simultaneously, leading to an attack by hydroxyl radicals from both ends. On the other hand, on the mixed-terminated surface, only the aliphatic part adsorbs and is degraded. The exposed surface is therefore the key factor controlling the degradation pathway. For diuron degradation on ZnO, a catalyst confined to mixed-terminated surfaces, i.e., ZnO nanorods, is more desirable, as it avoids the formation of intermediates with potent phytotoxicity and cytogenotoxicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号