首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   0篇
  国内免费   24篇
废物处理   1篇
环保管理   6篇
综合类   26篇
基础理论   25篇
污染及防治   115篇
评价与监测   11篇
社会与环境   14篇
  2023年   3篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2016年   9篇
  2014年   1篇
  2013年   21篇
  2012年   16篇
  2011年   40篇
  2010年   15篇
  2009年   22篇
  2008年   16篇
  2007年   7篇
  2006年   5篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   5篇
  2001年   5篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1994年   1篇
排序方式: 共有198条查询结果,搜索用时 15 毫秒
51.
Radionuclides and heavy metals were studied in green, brown and red Black Sea macroalgae by low-level gamma spectrometry and atomic absorption spectrometry. The samples were collected along the whole Bulgarian coast from 1996 to 2004. The levels have been depending on algae species, locations and year of sampling. The highest 137Cs levels were found in red Ceramium rubrum species from all studied locations, while 226Ra and 210Pb were up to three orders of magnitude higher in Bryopsis plumosa. The data showed that the red algae species (Rhodophyta) accumulate more heavy metals than the other phyla (except for Fe whose values were higher in green algae). The data confirmed that algae are valuable indicators of the environmental contamination. The observed elevated levels were mainly due to Danube, Dnieper and Dnester inputs in the NW corner of the Black Sea.  相似文献   
52.
Bioremediation of arsenic contaminated soils and groundwater shows a great potential for future development due to its environmental compatibility and possible cost-effectiveness. It relies on microbial activity to remove, mobilize, and contain arsenic through sorption, biomethylation–demethylation, complexation, coprecipitation, and oxidation–reduction processes. This paper gives an evaluation on the feasibility of using biological methods for the remediation of arsenic contaminated soils and groundwater. Ex-situ bioleaching can effectively remove bulk arsenic from contaminated soils. Biostimulation such as addition of carbon sources and mineral nutrients can be applied to promote the leaching rate. Biosorption can be used either ex-situ or in-situ to remove arsenic from groundwater by sorption to biomass and/or coprecipitation with biogenic solids or sulfides. Introduction of proper biosorbents or microorganisms to produce active biosorbents in-situ is the key to the success of this method. Phytoremediation depends on arsenic-hyperaccumulating plants to remove arsenic from soils and shallow groundwater by translocating it into plant tissues. Engineering genetic strategies can be employed to increase the arsenic-hyperaccumulating capacity of the plants. Biovolatilization may be developed potentially as an ex-situ treatment technology. Further efforts are needed to focus on increasing the volatilization rate and the post-treatment of volatilization products.  相似文献   
53.
Lewis M  Chancy C 《Chemosphere》2008,70(11):2016-2024
Total mercury concentrations are summarized for environmental media and biota collected from near-coastal areas, several impacted by contaminant sources common to the Gulf of Mexico. Water, sediment, fish, blue crabs, oysters, clams, mussels, periphyton and seagrasses were collected during 1993–2002 from targeted areas affected by point and non-point source contaminants. Mean concentrations in water and sediment were 0.02 (±1 standard deviation = 0.06) μg l−1 and 96.3 (230.8) ng g−1 dry wt, respectively. Mean total mercury concentrations in fish, blue crabs, brackish clams and mussels were significantly greater than those in sediment, seagrass, colonized periphyton and oysters. Concentrations (ng g−1 dry wt) averaged 23.1 (two seagrass species), 220.1 (oysters), 287.8 (colonized periphyton), 604.0 (four species of freshwater mussels), 772.4 (brackish clam), 857.9 (blue crabs) and 933.1 (nine fish species). Spatial, intraspecific and interspecific variability in results limited most generalizations concerning the relative mercury contributions of different stressor types. However, concentrations were significantly greater for some biota collected from areas receiving wastewater discharges and golf course runoff (fish), agricultural runoff (oysters) and urban stormwater runoff (colonized periphyton and sediment). Marine water quality criteria and proposed sediment quality guidelines were exceeded in 1–12% of total samples. At least one seafood consumption guideline, criteria or screening value were exceeded in edible tissues of blue crabs (6% total samples) and nine fish species (8–33% total samples) but all residues were less than the US Federal Drug Administration action limit of 1.0 ppm and the few reported toxic effect concentrations available for the targeted biota.  相似文献   
54.
Several submerged barges were recently removed from the Passaic River, New Jersey, USA, in two areas (areas 1 and 2) where contaminated sediments are known to exist. During removal of the single barge in area 1, elevated turbidity levels and chemical parameters were measured. Greater increases were measured in area 2, where several barges were removed. In both areas, water column concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and several metals exceeded one or more water quality criteria; turbidity levels in area 2 also exceeded regulatory criteria. Potential chemical bioaccumulation from the water column into residential aquatic receptors was estimated using standard models and assumptions. The modeled results predicted that steady-state tissue concentrations of bioaccumulative chemicals would not occur as a result of the brief increase in water column concentrations that occurred during barge removal but that metals and PCDD/Fs could bioaccumulate to levels that exceed regulatory ecological criteria during long-term sediment disturbance activities. In addition, based on some simplistic assumptions regarding settling of suspended sediments, we estimate that chemical bioaccumulation from surface sediments into the food web could result in substantial increases in PCDD/F body burdens in the benthic forage fish, mummichog. Our findings are consistent with the limited number of field studies that have measured increased body burdens of bioaccumulative chemicals following dredging. We suggest that, prior to consideration of extensive dredging as a remedial alternative for any river system, the potential significant and long-term impacts on the food web must be evaluated.  相似文献   
55.
A comparison of mussels (Perna viridis) and semi-permeable membrane devices (SPMDs) was carried out at five sites, representing a gradient of contaminant concentrations, in Hong Kong coastal waters. Mussels, originally collected from a “clean” location, were deployed along with SPMDs at each site for 30 days. Analyses for chlorinated pesticides and polychlorinated biphenyls (PCBs) indicated that SPMDs have potential as monitoring tools, and to some extent can overcome the problems associated with mussels, such as natural variability, differing age, sex, and physical condition. However, in most cases, SPMDs failed to rank the sites in the same order as mussels in terms of contaminant concentrations. Nonetheless, in localities where mussels cannot survive – as shown at Kwun Tong in the present experiment – SPMDs may be valuable in providing an indication of potentially bio-available lipophilic pollutants.  相似文献   
56.
Seven popular fluoroquinolone antibiotics (FQs) in synthetic marine aquaculture water were subject to sodium hypochlorite (NaClO) disinfection scenario to investigate their reaction kinetics and transformation during chlorination. Reactivity of each FQ to NaClO was following the order of ofloxacin (OFL) > enrofloxacin (ENR) > lomefloxacin (LOM) > ciprofloxacin (CIP) ~ norfloxacin (NOR) >> pipemedic acid (PIP), while flumequine did not exhibit reactivity. The coexisting chlorine ions and sulfate ions in the water slightly facilitated the oxidation of FQs by NaClO, while humic acid was inhibitable to their degradation. The bromide ions promoted degradation of CIP and LOM, but restrained oxidation of OFL and ENR. By analysis of liquid chromatography with tandem mass spectrometry (LC-MS/MS), eight kinds of emerging brominated disinfection byproducts (Br-DBPs) caused by FQS were primarily identified in the chlorinated synthetic marine culture water. Through density functional theory calculation, the highest-occupied molecular orbital (HOMO) and the lowest-unoccupied molecular orbital (LUMO) characteristic as well as the charge distribution of the FQs were obtained to clarify transformation mechanisms. Their formation involved decarboxylation, ring-opening/closure, dealkylation and halogenation. Chlorine substitution occurred on the ortho-position of FQs's N4 and bromine substitution occurred on C8 position. The piperazine ring containing tertiary amine was comparatively stable, while this moiety with a secondary amine structure would break down during chlorination. Additionally, logKow and logBAF of transformation products were calculated by EPI-SuiteTM to analyze their bioaccumulation. The values indicated that Br-DBPs are easier to accumulate in the aquatic organism relative to their chloro-analogues and parent compounds.  相似文献   
57.
Mercury (Hg) could be microbially methylated to the bioaccumulative neurotoxin methylmercury (MeHg), raising health concerns. Understanding the methylation of various Hg species is thus critical in predicting the MeHg risk. Among the known Hg species, mercury sulfide (HgS) is the largest Hg reservoir in the lithosphere and has long been considered to be highly inert. However, with advances in the analytical methods of nanoparticles, HgS nanoparticles (HgS NPs) have recently been detected in various environmental matrices or organisms. Furthermore, pioneering laboratory studies have reported the high bioavailability of HgS NPs. The formation, presence, and transformation (e.g., methylation) of HgS NPs are intricately related to several environmental factors, especially dissolved organic matter (DOM). The complexity of the behavior of HgS NPs and the heterogeneity of DOM prevent us from comprehensively understanding and predicting the risk of HgS NPs. To reveal the role of HgS NPs in Hg biogeochemical cycling, research needs should focus on the following aspects: the formation pathways, the presence, and the environmental behaviors of HgS NPs impacted by the dominant influential factor of DOM. We thus summarized the latest progress in these aspects and proposed future research priorities, e.g., developing the detection techniques of HgS NPs and probing HgS NPs in various matrices, further exploring the interactions between DOM and HgS NPs. Besides, as most of the previous studies were conducted in laboratories, our current knowledge should be further refreshed through field observations, which would help to gain better insights into predicting the Hg risks in natural environment.  相似文献   
58.
Methylsiloxanes are a class of silicone compounds that have been widely used in various industrial processes and personal care products for several decades. This study investigated the spatial distribution of three cyclic methylsiloxanes (D4–D6) and twelve linear methylsiloxanes (L5–L16) in mollusks collected from seven cities along the Bohai Sea. D4–D6 (df?=?71%–81%) and L8–L16 (df?=?32%–40%) were frequently detectable in the mollusk samples, while L5–L7 were not found in any mollusk samples. Cyclic methylsiloxanes (D4–D6) were found in mollusks with the mean concentrations of 15.7?±?12.3?ng/g ww for D4, 24.6?±?15.8?ng/g ww for D5 and 34.0?±?23.0?ng/g ww for D6. Among the seven sampling cities, the cyclic methylsiloxanes were predominant in mollusks, with the total cyclic methylsiloxanes (sum of D4–D6, ∑ CMS) accounting for 74.2%–80.7% of the total methylsiloxanes. ∑ CMS along the coastline demonstrated a clear gradient, with the highest concentrations in mollusks at the sampling sites located in the western part of the Bohai Sea and the lowest concentrations in mollusks from cities located in the eastern part of the Bohai Sea. The biota-sediment accumulation factors for cyclic methylsiloxanes (D4–D6) and linear methylsiloxanes (L8–L16) were estimated as 0.42?±?0.06–0.53?±?0.06 and 0.13?±?0.03–0.19?±?0.05, respectively.  相似文献   
59.
As a global toxic pollutant,mercury(Hg)bioaccumulation within food chain could be influenced by human disturbance.Ten typical fish species were collected from Changshou Lake,an artificial lake used to carry out cage fish culture,to investigate the C/N isotopic compositions and Hg bioaccumulation in fish.The results showed that the total Hg(THg)and methylmercury(MeHg)levels in fish muscles((56.03±43.96)and(32.35±29.57)ng/g,wet weight),comparable with those in most studies in China,were significantly lower than the international marketing limit(0.5 mg/kg).Past human input for cage culture in this lake led to abnormal~(15)N enrichment in food chain,as the quantitative trophic levels based onδ~(15)N were different with that classified by feeding behaviors.This phenomenon subsequently demonstrated that it should be considered thoughtfully with respect to the application of the traditional method for understanding Hg bioaccumulation power by the slope of log_(10)[Hg]withδ~(15)N regression in specific water body(i.e.,Changshou Lake).In addition,no significant linear correlation between Hg and body weight or length of some fish species was observed,suggesting that the fish growth in the eutrophic environment was disproportionate with Hg bioaccumulation,and fish length or weight was not the main factor affecting Hg transfer with food web.The occurrence of human disturbance in aquatic system presents a challenge to a better understanding of the Hg bioaccumulation and biomagnification within the food chain.  相似文献   
60.
The concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in two plant species (Scirpus tripueter Linn. and Cyperus malaccensis Lam.), water, and soils sampled from the reclaimed tidal riparian wetlands (RTRWs) and the natural riparian wetlands (NRWs) in the Pearl River estuary (PRE), were analyzed to investigate and compare their distribution and accumulation. The results show that the concentrations of the six studied heavy metals in soils exceed the eco-toxic threshold recommended by USEPA. The concentrations of Cd, Cr, and Zn in plants may lead to toxic effects compared to others.The hydraulic conditions and the degree of human disturbances can affect the heavy metal accumulation in RTRWs and NRWs. The heavy metal concentrations in water are higher whereas they are lower in soils of RTRWs Compared with that in the NRWs. The accumulation of heavy metals in the roots of plants is higher in NRWs than those in RTRWs while the opposite result is found for heavy metal accumulation in shoots. Based on the bioaccumulation and translocation factors, the plants in NRWs have the higher capacity to accumulate heavy metals, while higher abilities to transport heavy metals from roots to shoots are observed in RTRWs. Heavy metal contaminations in RTRWs are dominated by anthropogenic sources from both side uplands and river water, whereas in NRWs, the metal accumulations are simultaneously affected by anthropogenic and natural factors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号