首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   1篇
  国内免费   40篇
安全科学   9篇
废物处理   12篇
环保管理   41篇
综合类   78篇
基础理论   33篇
污染及防治   52篇
评价与监测   4篇
社会与环境   3篇
  2023年   2篇
  2022年   3篇
  2021年   10篇
  2020年   4篇
  2019年   8篇
  2018年   10篇
  2017年   6篇
  2016年   8篇
  2015年   18篇
  2014年   8篇
  2013年   16篇
  2012年   14篇
  2011年   29篇
  2010年   12篇
  2009年   17篇
  2008年   12篇
  2007年   10篇
  2006年   6篇
  2005年   5篇
  2004年   3篇
  2003年   4篇
  2002年   6篇
  2001年   1篇
  2000年   2篇
  1999年   5篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1989年   2篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有232条查询结果,搜索用时 31 毫秒
211.
Guidelines provided by OECD and EPPO allow the use of data obtained in greenhouse experiments in the risk assessment for pesticides to non-target terrestrial plants in the field. The present study was undertaken to investigate the predictability of effects on field-grown plants using greenhouse data. In addition, the influence of plant development stage on plant sensitivity and herbicide efficacy, the influence of the surrounding vegetation on individual plant sensitivity and of sublethal herbicide doses on the biomass, recovery and reproduction of non-crop plants was studied. Results show that in the future, it might well be possible to translate results from greenhouse experiments to field situations, given sufficient experimental data. The results also suggest consequences at the population level. Even when only marginal effects on the biomass of non-target plants are expected, their seed production and thereby survival at the population level may be negatively affected.  相似文献   
212.
两级曝气生物滤池启动过程研究   总被引:4,自引:0,他引:4  
曝气生物滤池是在普通生物滤池的基础上开发的污水处理新工艺.研究了两级曝气生物滤池处理生活污水时各级的启动状况,考察了出水中主要污染物和生物滤池内生物量随时间的变化情况.结果表明,氧化有机物的碳化曝气生物滤池的启动速度要远快于氧化氨氮的硝化曝气生物滤池.鉴于这两部分在启动期间表现出来的不同特性,在处理生活污水的时候,为了获得更快的同步启动速度,这两级曝气生物滤池应分别启动,并重点针对硝化滤池增加强化措施.  相似文献   
213.
About half the world's households cook and/or heat daily with biomass fuels. At small scale, biomass combustion releases significant amounts of particulates, carbon monoxide, and hydrocarbons, the latter with significant concentrations of polycyclic aromatic hydrocarbons. Preliminary measurements in kitchens of developing-country villages have established airborne concentrations of these healthdamaging pollutants that are orders of magnitude above urban levels or relevant standards. Particle size measurements and dose calculations lead to significant concerns about potential health hazards. The few epidemiological studies are consistent with such effects although more work is clearly needed. These findings may have significant implications for the planning of rural energy development in a number of countries. In particular, they may relate directly to the question of the optimum balance between centralized and decentralized systems.  相似文献   
214.
Methanotrophic based process can be the remedy to offset the wastewater treatment facilities increasing energy requirements due to methanotroph's unique ability to integrate methane assimilation with multiple biotechnological applications like biological nitrogen removal and methanol production. Regardless of the methanotrophic process end product, the challenge to maintain stable microbial growth in the methanotrophs cultivation bioreactor at higher cell densities is one of the major obstacles facing the process upscaling. Therefore, a series of consecutive batch tests were performed to attentively investigate the biomass density influence on type I methanotrophs bacterial growth. In addition, food to microorganisms(F/M), carbon to nitrogen(C/N) and nitrogen to microorganisms(N/M) ratio effect on the microbial activity was studied for the first time. It was clarified that the F/M ratio is the most influencing factor on the microbial growth at higher biomass densities rather than the biomass density increase, whereas C/N and N/M ratio change, while using nitrate as the nitrogen source,does not influence methanotrophs microbial growth. These study results would facilitate the scaling up of methanotrophic based biotechnology by identifying that F/M ratio as the key parameter that influences methanotrophs cultivation at high biomass densities.  相似文献   
215.
N-dodecanoyl homoserine lactone (C12-HSL) was detected in the supernatant of an anammox granular sludge reactor (AGSR). C12-HSL could enhance the specific anammox activity of anammox biomass. Adding C12-HSL-containing AGSR supernatant into the continuously stirred tank reactors reduced the start-up time of the anammox process from 80 to 66 days. Moreover, the nitrogen loading rate was also enhanced to 1.6 times that of the control reactor. AHLs could increase the secretion of extracellular polymeric substances and anammox obtained better enrichment with the addition of AHLs-containing AGSR supernatant. Denaturing gradient gel electrophoresis analysis further revealed that AHLs played a role in mediating microbial community parameters. In conclusion, adding AHL-containing supernatant could be an effective and economical way to accelerate the start-up of anammox.  相似文献   
216.
Growth responses of herbaceous mimosa (Mimosa strigillosa Torr. and Gray), a potential new reclamation species in the SE USA and Mexico, to nine soil pH scales were studied under a controlled environment at Nacogdoches, TX, USA. Twenty seeds were planted in each of 40 (nine scales plus one control in four replicates) 20.3-cm pots filled with Tonkawa sandy soil. These pots were treated with H2SO4 or Ca(OH)2 to adjust each pot to its designated pH level. After 15 days of seeding, the emergence rate was at best about 50–70% for pH 4.7–6.6. The plant can survive and grow at soil pH as low as 4.7, but the optimum growth seems to be on soils with pH ranging from 6.2 to 7.1. At this pH range, the plant exhibits higher values of green and dry biomass, longer shoot growth and lower root/shoot weight and length ratios. The survival rate was greater than 90% for all treatments, except for pH 4.1. There were no nutrient deficiencies in plant tissues on soil pH 4.7 or higher. The plant allocated more growth to the shoot under optimum conditions, but more growth to the roots under environmental stress. It is not suitable for herbaceous mimosa to grow on soils with pH 4.1 or less.  相似文献   
217.
The dynamics of agricultural and forestry biomass are highly sensitive to climate change, particularly in high latitude regions. Heilongjiang Province was selected as research area in North-east China. We explored the trend of regional climate warming and distribution feature of biomass resources, and then analyzed on the spatial relationship between climate factors and biomass resources. Net primary productivity (NPP) is one of the key indicators of vegetation productivity, and was simulated as base data to calculate the distribution of agricultural and forestry biomass. The results show that temperatures rose by up to 0.37°C/10a from 1961 to 2013. Spatially, the variation of agricultural biomass per unit area changed from -1.93 to 5.85 t·km–2·a–1 during 2000–2013. More than 85% of farmland areas showed a positive relationship between agricultural biomass and precipitation. The results suggest that precipitation exerts an overwhelming climate influence on agricultural biomass. The mean density of forestry biomass varied from 10 to 30 t·km–2. Temperature had a significant negative effect on forestry biomass in Lesser Khingan and northern Changbai Mountain, because increased temperature leads to decreased Rubisco activity and increased respiration in these areas. Precipitation had a significant positive relationship with forestry biomass in south-western Changbai Mountain, because this area had a warmer climate and stress from insufficient precipitation may induce xylem cavitation. Understanding the effects of climate factors on regional biomass resources is of great significance in improving environmental management and promoting sustainable development of further biomass resource use.
  相似文献   
218.
Raw coal (RC) is the main fuel in many, especially rural parts of China. Biomass briquette (BB), which has less SO2 emission, was developed as a cleaner alternative for RC. In this research, the cooking fuel of a group of countrywomen was switched from RC to BB and studied for health effects. Five biological indices percent of comet cell (COMET), lysozyme saliva (LYS), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX) were chosen. All indices were measured three times during the 18-month experiment. Statistical analysis shows that there are significant changes in the indices. Using BB as a cooking fuel improves the function of anti-oxidation system and the nonspecific immune system, and reduces the DNA damage, which is negatively related to LYS and SOD.  相似文献   
219.
The growth of Cladophora spp. is vigorous in the field, but not good under indoor culture conditions. In order to promote the study on ecology, water environment treatment characteristics, and the development and utilization of Cladophora, the effects of three different culture methods (standing, ventilating, water flowing + ventilating) on biomass, morphology, and photosynthetic activity of C. oligoclona were compared in order to find a suitable method for its indoor culture. The results showed that the culture method of water flowing + ventilating could effectively promote C. oligoclona biomass accumulation; the morphologies in the three culture methods were different. C. oligoclona with increased single cell length and reduced cell diameter was found in the culture method involving water flowing + ventilating; in this method, the length of the main branch and branch of the cell, plant height, and branch length of C. oligoclona were significantly higher than that in the standing and ventilating culture methods (P < 0.05). C. oligoclona cultured in the water flowing + ventilating method also showed a higher photosynthetic activity. In conclusion, among the three culture methods, the water flowing + ventilating culture method is the most suitable for the indoor culturing of C. oligoclona; this method can also provide a technical reference for the further indoor mass culture of C. oligoclona. © 2018 Science Press. All rights reserved.  相似文献   
220.
从提高秸秆类生物质利用效率与利用价值、提高农民生活质量与生活品位、减少污染、充分利用可再生能源资源和延缓不可再生能源资源的持续利用等,阐明推广应用秸秆类生物质气化集中供气技术的重要意义;介绍气化基本原理与工艺流程,秸秆类生物质粉碎后通过干燥、裂解反应、氧化反应和还原反应,即可完成气化全过程;气化工程由燃气发生炉机组、储气柜、输气管网和用户燃气设备4部分组成;秸秆类生物质燃气与城市管道煤气具有共同的特点。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号