首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1326篇
  免费   55篇
  国内免费   222篇
安全科学   83篇
废物处理   45篇
环保管理   284篇
综合类   643篇
基础理论   204篇
环境理论   1篇
污染及防治   189篇
评价与监测   61篇
社会与环境   86篇
灾害及防治   7篇
  2024年   2篇
  2023年   31篇
  2022年   42篇
  2021年   35篇
  2020年   44篇
  2019年   46篇
  2018年   44篇
  2017年   47篇
  2016年   66篇
  2015年   59篇
  2014年   66篇
  2013年   92篇
  2012年   58篇
  2011年   142篇
  2010年   69篇
  2009年   99篇
  2008年   92篇
  2007年   104篇
  2006年   53篇
  2005年   55篇
  2004年   45篇
  2003年   38篇
  2002年   39篇
  2001年   30篇
  2000年   23篇
  1999年   19篇
  1998年   30篇
  1997年   20篇
  1996年   18篇
  1995年   19篇
  1994年   11篇
  1993年   8篇
  1992年   10篇
  1991年   9篇
  1990年   4篇
  1989年   7篇
  1988年   4篇
  1987年   3篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1975年   2篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有1603条查询结果,搜索用时 31 毫秒
991.
In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material stream. Streams of heavy fraction and fine fraction mainly contained non-combustible material (such as stone/rock, sand particles and gypsum material).  相似文献   
992.
Forest reference levels (FRLs) provide a benchmark for assessing reduced emissions from deforestation and forest degradation (REDD+), and they are central to demonstrate additionality of REDD+. Attaining realistic FRLs, however, is challenging, especially in complex mosaic landscapes. We established FRLs in northern Laos for different reference periods and tested them against actual carbon stock changes. Annual time series of Landsat satellite images were used to capture the subtle changes in carbon stocks in complex landscapes characterized by shifting cultivation. We found that FRLs differ considerably depending on the reference period chosen. Abrupt land-use changes occurred when hybrid maize replaced traditional shifting cultivation and forests, and this invalidated carbon stock trends that would have been predicted had the FRL been projected into the future. We conclude that demonstrating additionality of REDD+ in fast developing areas is difficult and that payment systems rewarding potential emission reductions against hypothetical extrapolation of FRLs are unlikely to be a cost-effective strategy.  相似文献   
993.
Single-wall carbon nanotubes are a major type of nano-objects that have industrial applications such as fuel cells. In this study, four types of single-wall carbon nanotubes and their abilities to aggravate allergic reactions were examined: those containing Fe, those containing Ni, and the corresponding purified metal-free ones. These were administered to mice via pharyngeal aspiration. Subsequently, the mice inhaled ovalbumin a total of eight times over three weeks. After inhalation of ovalbumin, the concentrations of total immunoglobulin E and ovalbumin-specific immunoglobulin E in serum increased in mice treated with purified metal-free and Fe containing single-wall carbon nanotubes while those containing Ni did not affect total and ovalbumin-specific immunoglobulin E levels. Additionally, the purified metal-free and Fe containing nanotubes caused the gene expression of heme oxygenase-1, chemokine (C-X-C motif) ligand 2, and tumor necrosis factor-α, suggesting that some kinds of single-wall carbon nanotubes have the potential to aggravate allergic reactions via oxidative stress and inflammation. Incorporated metals do not seem to be involved in the aggravation of allergic reactions. Other physical properties, such as fiber length and aggregation state, may be involved in enhancing allergic reactions.  相似文献   
994.
A dispersion model validation study is presented for atmospheric releases of dense-phase carbon dioxide (CO2). Predictions from an integral model and two different Computational Fluid Dynamics (CFD) models are compared to data from field-scale experiments conducted by INERIS, as part of the EU-funded CO2PipeHaz project.The experiments studied consist of a 2 m3 vessel fitted with a short pipe, from which CO2 was discharged into the atmosphere through either a 6 mm or 25 mm diameter orifice. Comparisons are made to measured temperatures and concentrations in the multi-phase CO2 jets.The integral dispersion model tested is DNV Phast and the two CFD models are ANSYS-CFX and a research and development version of FLACS, both of which adopt a Lagrangian particle-tracking approach to simulate the sublimating solid CO2 particles in the jet. Source conditions for the CFD models are taken from a sophisticated near-field CFD model developed by the University of Leeds that simulates the multi-phase, compressible flow in the expansion region of the CO2 jet, close to the orifice.Overall, the predicted concentrations from the various models are found to be in reasonable agreement with the measurements, but generally in poorer agreement than has been reported previously for similar dispersion models in other dense-phase CO2 release experiments. The ANSYS-CFX model is shown to be sensitive to the way in which the source conditions are prescribed, while FLACS shows some sensitivity to the solid CO2 particle size. Difficulties in interpreting the results from one of the tests, which featured some time-varying phenomena, are also discussed.The study provides useful insight into the coupling of near- and far-field dispersion models, and the strengths and weaknesses of different modelling approaches. These findings contribute to the assessment of potential hazards presented by Carbon Capture and Storage (CCS) infrastructure.  相似文献   
995.
Thirty-one alkaline industrial wastes from a wide range of industrial processes were acquired and screened for application in an aqueous carbon sequestration process. The wastes were evaluated for their potential to leach polyvalent cations and base species. Following mixing with a simple sodium bicarbonate solution, chemistries of the aqueous and solid phases were analyzed. Experimental results indicated that the most reactive materials were capable of sequestering between 77% and 93% of the available carbon under experimental conditions in four hours. These materials – cement kiln dust, spray dryer absorber ash, and circulating dry scrubber ash – are thus good candidates for detailed, process-oriented studies. Chemical equilibrium modeling indicated that amorphous calcium carbonate is likely responsible for the observed sequestration. High variability and low reactive fractions render many other materials less attractive for further pursuit without considering preprocessing or activation techniques.  相似文献   
996.
The spatial variability of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes from forest soil with high nitrogen (N) deposition was investigated at a rolling hill region in Japan. Gas fluxes were measured on July 25th and December 5th, 2008 at 100 points within a 100 × 100 m grid. Slope direction and position influenced soil characteristics and site-specific emissions were found. The CO2 flux showed no topological difference in July, but was significantly lower in December for north-slope with coniferous trees. Spatial dependency of CH4 fluxes was stronger than that of CO2 or N2O and showed a significantly higher uptake in hill top, and emissions in the valley indicating strong influence of water status. N2O fluxes showed no spatial dependency and exhibited high hot spots at different topology in July and December. The high N deposition led to high N2O fluxes and emphasized the spatial variability.  相似文献   
997.
Carbon dioxide (CO2) injection into saline aquifers is one of the promising options to sequester large amounts of CO2 in geological formations. During as well as after injection of CO2 into an aquifer, CO2 migrates towards the top of the formation due to density differences between the formation brine and the injected CO2. The time scales of CO2 migration towards the top of an aquifer and the fraction of CO2 that is trapped as residual gas depends strongly on the driving forces that are acting on the injected CO2.When CO2 migrates to the top of an aquifer, brine may be displaced downwards in a counter-current flow setting particularly during the injection period. A majority of the published work on counter-current flow settings have reported significant reductions in the associated relative permeability functions as compared to co-current measurements. However, this phenomenon has not yet been considered in the simulation of CO2 storage into saline aquifers.In this paper we study the impact of changes in mobility for the two-phase brine/CO2 system as a result of transitions between co- and counter-current flow settings. We have included this effect in a simulator and studied the impact of the related mobility reduction on the saturation distribution and residual saturation of CO2 in aquifers over relevant time scales. We demonstrate that the reduction in relative permeability in the vertical direction changes the plume migration pattern and has an impact on the amount of gas that is trapped as a function of time. This is to our best knowledge the first attempt to integrate counter-current relative permeability into the simulation of injection and subsequent migration of CO2 in aquifers. The results and analysis presented in this paper are directly relevant to all ongoing activities related to the design of large-scale CO2 storage in saline aquifers.  相似文献   
998.
Restoration of abandoned and degraded ecosystems through enhanced management of mature remnant patches and naturally regenerating (regrowth) forests is currently being used in the recovery of ecosystems for biodiversity protection and carbon sequestration. Knowledge of long-term dynamics of these ecosystems is often very limited. Vegetation models that examine long-term forest growth and succession of uneven aged, mixed-species forest ecosystems are integral to the planning and assessment of the recovery process of biodiversity values and biomass accumulation. This paper examined the use of the Ecosystem Dynamics Simulator (EDS) in projecting growth dynamics of mature remnant brigalow forest communities and recovery process of regrowth brigalow thickets. We used data from 188 long-term monitored plots of remnant and regrowth forests measured between 1963 and 2010. In this study the model was parameterised for 34 tree and shrub species and tested with independent long-term measurements. The model closely approximated actual development trajectories of mature forests and regrowth thickets but some inaccuracies in estimating regeneration through asexual reproduction and mortality were noted as reflected in stem density projections of remnant plots that had a mean of absolute relative bias of 46.2 (±12.4)%. Changes in species composition in remnant forests were projected with a 10% error. Basal area values observed in all remnant plots ranged from 6 to 29 m2 ha−1 and EDS projections between 1966 and 2005 (39 years) were 68.2 (±10.9)% of the observed basal area. Projected live aboveground biomass of remnant plots had a mean of 93.5 (±5.9) t ha−1 compared to a mean of 91.3 (±8.0) t ha−1 observed in the plots. In regrowth thicket, the model produced satisfactory projections of tree density (91%), basal area (89%), height (87%) and aboveground biomass (84%) compared to the observed attributes. Basal area and biomass accumulation in 45-year-old regrowth plots was approximately similar to that in remnant forests but recovery of woody understorey was very slow. The model projected that it would take 95 years for the regrowth to thin down to similar densities observed in original or remnant brigalow forests. These results indicated that EDS can produce relatively accurate projections of growth dynamics of brigalow regrowth forests necessary for informing restoration planning and projecting biomass accumulation.  相似文献   
999.
Replicate mass-balanced solutions to Ecopath models describing carbon-based trophic structures and flows were developed for the Lake Ontario offshore food web before and after invasion-induced disruption. The food webs link two pathways of energy and matter flow: the grazing chain (phytoplankton-zooplankton-fish) and the microbial loop (bacteria-protozoans) and include 19 species-groups and three detrital groups. Mass-balance was achieved by using constrained optimization techniques to randomly vary initial estimates of biomass and diet composition. After the invasion, production declined for all trophic levels and species-groups except Chinook salmon. The trophic level (TL) increased for smelt, adult sculpin, adult alewife and Chinook salmon. Changes to ecotrophic efficiencies indicate a reduction in phytoplankton grazing, increased predation pressure on Mysis, adult smelt and alewife and decreased predation pressure on protozoans. Specific resource to consumer TTE changed; increasing for protozoans (8.0-11.5%), Mysis (0.6-1.0%), and Chinook salmon (1.0-2.3%) and other salmonines (0.4-0.5%) and decreasing for zooplankton (20.2-15.1%), prey-fish (9.7-8.8%), and benthos (1.7-0.6%). Direct trophic influences of recent invasive species were low. The synchrony of the decline in PP and species-group production indicates strong bottom-up influence. Mass balance required an increase of two to threefold in lower trophic level biomass and production, confirming a previously observed paradoxical deficit in lower trophic level production. Analysis of food web changes suggest hypotheses that may apply to other similar large pelagic systems including, (1) as pelagic primary productivity declines, overgrazing of zooplankton results in an increase in protozoan production and a loss of trophic transfer efficiency, (2) habitat and food web changes increased Mysis predation on Diporeia and contributed to their recent decline, and (3) production of Chinook salmon, the primary piscivore, was uncoupled from pelagic production processes. This study demonstrates the value of food web models to better understand the impact of invasive species and to develop novel hypotheses concerning trophic influences.  相似文献   
1000.
The individual-based stand-level model EFIMOD was used for large-scale simulations using standard data on forest inventories as model inputs. The model was verified for the case-study of field observations, and possible sources of uncertainties were analysed. The approach developed kept the ability for fine-tuning to account for spatial discontinuity in the simulated area. Several forest management regimes were simulated as well as forest wildfires and climate changes. The greatest carbon and nitrogen accumulations were observed for the regime without cuttings. It was shown that cuttings and wildfires strongly influence the processes of carbon and nitrogen accumulations in both soil and forest vegetation. Modelling also showed that the increase in annual average temperatures resulted in the partial relocation of carbon and nitrogen stocks from soil to plant biomass. However, forest management, particularly harvesting, has a greater effect on the dynamics of forest ecosystems than the prescribed climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号