首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   767篇
  免费   13篇
  国内免费   108篇
安全科学   54篇
废物处理   26篇
环保管理   159篇
综合类   304篇
基础理论   138篇
环境理论   1篇
污染及防治   131篇
评价与监测   40篇
社会与环境   35篇
  2023年   22篇
  2022年   26篇
  2021年   15篇
  2020年   15篇
  2019年   24篇
  2018年   15篇
  2017年   22篇
  2016年   38篇
  2015年   45篇
  2014年   45篇
  2013年   46篇
  2012年   28篇
  2011年   94篇
  2010年   42篇
  2009年   62篇
  2008年   68篇
  2007年   66篇
  2006年   27篇
  2005年   25篇
  2004年   20篇
  2003年   17篇
  2002年   17篇
  2001年   14篇
  2000年   14篇
  1999年   6篇
  1998年   15篇
  1997年   11篇
  1996年   11篇
  1995年   7篇
  1994年   8篇
  1993年   2篇
  1992年   5篇
  1991年   4篇
  1990年   1篇
  1989年   4篇
  1985年   3篇
  1984年   1篇
  1978年   2篇
  1969年   1篇
排序方式: 共有888条查询结果,搜索用时 171 毫秒
261.
The environmental performance of hemp based natural fiber mat thermoplastic (NMT) has been evaluated in this study by quantifying carbon storage potential and CO2 emissions and comparing the results with commercially available glass fiber composites. Non-woven mats of hemp fiber and polypropylene matrix were used to make NMT samples by film-stacking method without using any binder aid. The results showed that hemp based NMT have compatible or even better strength properties as compared to conventional flax based thermoplastics. A value of 63 MPa for flexural strength is achieved at 64% fiber content by weight. Similarly, impact energy values (84–154 J/m) are also promising. The carbon sequestration and storage by hemp crop through photosynthesis is estimated by quantifying dry biomass of fibers based on one metric ton of NMT. A value of 325 kg carbon per metric ton of hemp based composite is estimated which can be stored by the product during its useful life. An extra 22% carbon storage can be achieved by increasing the compression ratio by 13% while maintaining same flexural strength. Further, net carbon sequestration by industrial hemp crop is estimated as 0.67 ton/h/year, which is compatible to all USA urban trees and very close to naturally, regenerated forests. A comparative life cycle analysis focused on non-renewable energy consumption of natural and glass fiber composites shows that a net saving of 50 000 MJ (3 ton CO2 emissions) per ton of thermoplastic can be achieved by replacing 30% glass fiber reinforcement with 65% hemp fiber. It is further estimated that 3.07 million ton CO2 emissions (4.3% of total USA industrial emissions) and 1.19 million m3 crude oil (1.0% of total Canadian oil consumption) can be saved by substituting 50% fiber glass plastics with natural fiber composites in North American auto applications. However, to compete with glass fiber effectively, further research is needed to improve natural fiber processing, interfacial bonding and control moisture sensitivity in longer run.  相似文献   
262.
The human-driven loss of biodiversity has numerous ecological, social, and economic impacts at the local and global levels, threatening important ecological functions and jeopardizing human well-being. In this perspective, we present an overview of how tropical defaunation—defined as the disappearance of fauna as a result of anthropogenic drivers such as hunting and habitat alteration in tropical forest ecosystems—is interlinked with four selected Sustainable Development Goals (SDGs). We discuss tropical defaunation related to nutrition and zero hunger (SDG 2), good health and well-being (SDG 3), climate action (SDG 13), and life on land (SDG 15). We propose a range of options on how to study defaunation in future research and how to address the ongoing tropical defaunation crisis, including but not limited to recent insights from policy, conservation management, and development practice.  相似文献   
263.
Dimethyl sulphide (DMS) and carbon monoxide (CO) are climate-relevant trace gases that play key roles in the radiative budget of the Arctic atmosphere. Under global warming, Arctic sea ice retreats at an unprecedented rate, altering light penetration and biological communities, and potentially affect DMS and CO cycling in the Arctic Ocean. This could have socio-economic implications in and beyond the Arctic region. However, little is known about CO production pathways and emissions in this region and the future development of DMS and CO cycling. Here we summarize the current understanding and assess potential future changes of DMS and CO cycling in relation to changes in sea ice coverage, light penetration, bacterial and microalgal communities, pH and physical properties. We suggest that production of DMS and CO might increase with ice melting, increasing light availability and shifting phytoplankton community. Among others, policy measures should facilitate large-scale process studies, coordinated long term observations and modelling efforts to improve our current understanding of the cycling and emissions of DMS and CO in the Arctic Ocean and of global consequences.  相似文献   
264.
Nitrogenization is an effective method for improving the capacitive deionization(CDI) performance of porous carbon materials. In particular, polymer organic frameworks with heteroatom doping, containing an ordered pore structure and excellent electrochemical stability, are ideal precursors for carbon materials for high-performance CDI. In this study, a nitrogen-enriched micro-mesoporous carbon(NMC) electrode was fabricated by carbonizing a Schiff base network-1 at 500, 600, and 700 °C. Scanning ...  相似文献   
265.
不同碳源及其碳氮比对反硝化过程的影响   总被引:37,自引:0,他引:37  
碳源及碳氮比是生物法处理氨氮废水过程中的两个重要因素。本文论述了甲醇、蔗糖、报纸等不同物质作为碳源及其碳氮比对反硝化过程的影响 ,并对各碳源适宜的碳氮比加以总结。  相似文献   
266.
超稠油废水处理的实验研究   总被引:2,自引:0,他引:2  
针对超稠油废水污染的问题 ,确定采用混凝沉降、砂滤、活性炭吸附处理超稠油废水 ,处理后的水达到国家排放标准。此方法工艺比较简单 ,处理效果好  相似文献   
267.
2005年以来,黑龙江省社会经济持续稳步发展,截至2017年,全省GDP达到15903亿元,增长近3倍,人均GDP增长2.89倍,城镇化率达到60%,第三产业占全省生产总值比重达到55.82%。与此同时,全省碳排放量从19095万吨增加到27251万吨,增长1.43倍。通过对黑龙江省13年间社会经济数据的系统分析研判,人均GDP、城镇化率、碳排放强度等因素对全省碳排放量影响显著。  相似文献   
268.
DFT calculations in gas and aqueous solution phases have been performed to study the mechanism of carbamate formation by the absorption of CO2 in 2-amino-2-methyl-1-propanol (AMP). The results reveal the importance of considering the effect of water as solvent for the reaction to proceed. Furthermore water molecules play an important role as a basic reactant leading to stable intermediates formation. These results point at a single-step, third order reaction as the most probable mechanism for the formation of carbamate by the absorption process.  相似文献   
269.
Carbon capture and storage (CCS) may play a central role in managing carbon emissions from the power sector and industry, but public support for the technology is unclear. To address this knowledge gap, and to test the use of discrete choice analysis for determining public attitudes, two focus groups and a national survey were conducted in Canada to investigate the public's perceptions of the benefits and risks of CCS, the likely determinants of public opinion, and overall support for the use of CCS.The results showed slight support for CCS development in Canada, and a belief that CCS is less risky than normal oil and gas industry operations, nuclear power, or coal-burning power plants. A majority of respondents indicate that they would support the use of CCS as part of a greenhouse gas reduction strategy, although it would likely have to be used in combination with energy efficiency and alternative energy technologies in order to retain public support.  相似文献   
270.
Ecologists are increasingly actively involved in conservation. We identify five key topics from a broad sweep of ecology that merit research attention to meet conservation needs. We examine questions from landscape ecology, behavioral ecology, ecosystem dynamics, community ecology, and nutrient cycling related to key topics. Based on literature review and publication trend assessment, consultation with colleagues, and roundtable discussions at the 24th International Congress for Conservation Biology, focused research on the following topics could benefit conservation while advancing ecological understanding: 1. Carbon sequestration, requiring increased linkages to biodiversity conservation; 2. Ecological invasiveness, challenging our ability to find solutions to ecological aliens; 3. Individual variation, having applications in the conservation of rare species; 4. Movement of organisms, integrating ecological processes across landscapes and scales and addressing habitat fragmentation; and 5. Trophic-level interactions, driving ecological dynamics at the ecosystem-level. Addressing these will require cross-disciplinary research under the overarching framework of conservation ecology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号