首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   745篇
  免费   7篇
  国内免费   81篇
安全科学   107篇
废物处理   22篇
环保管理   78篇
综合类   308篇
基础理论   92篇
污染及防治   130篇
评价与监测   81篇
社会与环境   10篇
灾害及防治   5篇
  2024年   1篇
  2023年   10篇
  2022年   18篇
  2021年   32篇
  2020年   48篇
  2019年   13篇
  2018年   19篇
  2017年   15篇
  2016年   21篇
  2015年   27篇
  2014年   36篇
  2013年   39篇
  2012年   27篇
  2011年   44篇
  2010年   23篇
  2009年   59篇
  2008年   56篇
  2007年   42篇
  2006年   41篇
  2005年   26篇
  2004年   23篇
  2003年   34篇
  2002年   26篇
  2001年   24篇
  2000年   27篇
  1999年   19篇
  1998年   18篇
  1997年   15篇
  1996年   13篇
  1995年   9篇
  1994年   6篇
  1993年   6篇
  1992年   6篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1968年   1篇
排序方式: 共有833条查询结果,搜索用时 167 毫秒
781.
In recent years, the debate on corporate responsibility has shifted from a focus on environmental management towards a broader concept of corporate social responsibility (CSR). This article examines the chemical industry's approach to CSR from the perspective of two emerging economies: Mexico and South Africa. The global chemical industry was one of the first to respond to public concerns about environmental pollution, toxic waste and human health by adopting an industry‐wide code of practice, known as Responsible Care. This article examines the extent to which the chemical industry has responded to the broader debate on CSR. On the basis of a comparative case study, this article argues that the response to social issues by Mexican and South African chemical companies has tended to be limited to the ‘community awareness and emergency response’ (CAER) or community dialogue component of the international voluntary management framework, Responsible Care. Similarities and differences in regulatory and institutional conditions, as well as different levels of civil society engagement, reveal additional limitations for CSR, beyond that of the Responsible Care framework. This article argues that the socio‐political context influences the extent to which companies embrace CSR, especially in emerging economies, and highlights several challenges for the chemical industry in moving forward on CSR: credibility, stakeholder engagement, value‐chain accountability, disclosure and transparency. Reflecting on these challenges, the authors conclude by recommending a renewed focus on: (1) developing a broader set of CSR management practices beyond Responsible Care; (2) institutionalizing stronger accountability measures, such as reporting and verification; and (3) developing multi‐stakeholder partnerships that complement regulation and build public sector regulatory and guidance capacity.  相似文献   
782.
1991-1992年对重庆市郊若干酸化水体的生物待正与理化参数进行综合研究的结果表明,藻类的种类数、细胞密度、生物量和叶绿素a含量以及浮游动物的种类数等均与呈正相关,但与H+和总Al浓度呈负相关。浮游动物的个体密度在酸化水体中明显下降,但是鱼的捕食作用掩盖了其与上述化学参数之间的相关性。水体中H+和总Al浓度的增加在很大程度上对浮游生物产生了不利影响,水体的透明度、总Al.TP和SO与pH的相关性十分明显,r值分别为-0.6375、-0.6868、0.7561和0.7323。  相似文献   
783.
The influence of air pollution on the chemical composition of Pinus sp. needles was examined in polluted and control sites in and around the city of Palermo (Sicily). The chemical composition of needles indicated the extent of contamination of the trees, which were cytologically examined. Cell analysis was carried out on pine samples, including needles and pollens, from 15 different locations. Biostructural and spectrophotometric tests were performed. In particular, concentrations of toxic (Cd, Pb) and non-toxic metals (Fe,Cu, Zn) were determined, as well as injury caused by their accumulation in the needles. The more highly urbanised areas showed higher concentrations of metals (Pb, Cu. Zn, Fe); only the concentrations of Cd and Mn turned out to be constant in all the sites. Cell analysis revealed displasic cells and secondary metabolite accumulations in trees from polluted sites. These changes observed were most likely caused by the toxic effect of pollutants.  相似文献   
784.
In this research, a framework combining lean manufacturing principles and fuzzy bow-tie analyses is used to assess process risks in chemical industry. Lean manufacturing tools and techniques are widely used for eliminating wastes in manufacturing environments. The five principles of lean (identify value, map the value stream, create flow, establish pull, and seek perfection) are utilized in the risk assessment process. Lean tools such as Fishbone Diagram, and Failure Mode and Effect Analysis (FMEA) are used for risk analysis and mitigation. Lean principles and tools are combined with bow-tie analysis for effective risk assessment process. The uncertainty inherent with the risks is handled using fuzzy logic principles. A case study from a chemical process industry is provided. Main risks and risk factors are identified and analyzed by the risk management team. Fuzzy estimates are obtained for the risk factors and bow-tie analysis is used to calculate the aggregated risk probability and impact. The risks are prioritized using risk priority matrix and mitigation strategies are selected based on FMEA. Results showed that the proposed framework can effectively improve the risk management process in the chemical industry.  相似文献   
785.
Chemical industrial areas or so-called chemical clusters consist of hundreds, and sometimes thousands, of chemical installations situated next to each other. Such areas can thus be seen as the summation of a large number of structures exhibiting danger to a certain degree for initiating or continuing accident domino effects or knock-on effects. In this article, an approach to investigate in a systemic way the vulnerability of each installation within the larger chemical cluster context, is developed. Our suggested method results in a prioritization of chemical installations with respect to their vulnerability for domino effects. The method can be used for intelligently designed protection of chemical industrial areas against terrorist attacks.  相似文献   
786.
•HAAs was dominant among the DBPs of interest. •Rising time, dose, temperature and pH raised TCM and HAAs but reduced HANs and HKs. •Low time, dose and temperature and non-neutrality pH reduced toxic risks of DBPs. •The presence of EPS decelerated the production of DBPs. •EPS, particularly polysaccharides were highly resistant to chlorine. Periodic chemical cleaning with sodium hypochlorite (NaClO) is essential to restore the membrane permeability in a membrane bioreactor (MBR). However, the chlorination of membrane foulants results in the formation of disinfection by-products (DBPs), which will cause the deterioration of the MBR effluent and increase the antibiotic resistance in bacteria in the MBR tank. In this study, the formation of 14 DBPs during chemical cleaning of fouled MBR membrane modules was investigated. Together with the effects of biofilm extracellular polymeric substances (EPS), influences of reaction time, NaClO dosage, initial pH, and cleaning temperature on the DBP formation were investigated. Haloacetic acids (HAAs) and trichloromethane (TCM), composed over 90% of the DBPs, were increasingly accumulated as the NaClO cleaning time extended. By increasing the chlorine dosage, temperature, and pH, the yield of TCM and dichloroacetic acid (DCAA) was increased by up to a factor of 1‒14, whereas the yields of haloacetonitriles (HANs) and haloketones (HKs) were decreased. Either decreasing in the chlorine dosage and cleaning temperature or adjusting the pH of cleaning reagents toward acidic or alkaline could effectively reduce the toxic risks caused by DBPs. After the EPS extraction pretreatment, the formation of DBPs was accelerated in the first 12 h due to the damage of biofilm structure. Confocal laser scanning microscopy (CLSM) images showed that EPS, particularly polysaccharides, were highly resistant to chlorine and might be able to protect the cells exposed to chlorination.  相似文献   
787.
•The history of biological and artificial water channels is reviewed. •A comprehensive channel characterization platform is introduced. •Rationale designs and fabrications of biomimetic membranes are summarized. •The advantages, limitations, and challenges of biomimetic membranes are discussed. •The prospect and scalable solutions of biomimetic membranes are discussed. Bioinspired and biomimetic membranes that contain biological transport channels or attain their structural designs from biological systems have been through a remarkable development over the last two decades. They take advantage of the exceptional transport properties of those channels, thus possess both high permeability and selectivity, and have emerged as a promising solution to existing membranes. Since the discovery of biological water channel proteins aquaporins (AQPs), extensive efforts have been made to utilize them to make separation membranes–AQP-based membranes, which have been commercialized. The exploration of AQPs’ unique structures and transport properties has resulted in the evolution of biomimetic separation materials from protein-based to artificial channel-based membranes. However, large-scale, defect-free biomimetic membranes are not available yet. This paper reviews the state-of-the-art biomimetic membranes and summarizes the latest research progress, platform, and methodology. Then it critically discusses the potential routes of this emerging area toward scalable applications. We conclude that an appropriate combination of bioinspired concepts and molecular engineering with mature polymer industry may lead to scalable polymeric membranes with intrinsic selective channels, which will gain the merit of both desired selectivity and scalability.  相似文献   
788.
Factors impacting indoor-outdoor relations are introduced. Sulfate seems a fine tracer for other non-volatile species. Particulate nitrate and ammonium desorb during outdoor-to-indoor transport. OC load increases during the transport due to sorption of indoor SVOCs. Outdoor PM2.5 influences both the concentration and composition of indoor PM2.5. People spend over 80% of their time indoors. Therefore, to assess possible health effects of PM2.5 it is important to accurately characterize indoor PM2.5 concentrations and composition. Controlling indoor PM2.5 concentration is presently more feasible and economic than decreasing outdoor PM2.5 concentration. This study reviews modeling and measurements that address relationships between indoor and outdoor PM2.5 and the corresponding constituent concentrations. The key factors in the models are indoor-outdoor air exchange rate, particle penetration, and deposition. We compiled studies that report I/O ratios of PM2.5 and typical constituents (sulfate (SO42-), nitrate (NO3-), ammonium (NH4+), elemental carbon (EC), and organic carbon (OC), iron (Fe), copper (Cu), and manganese (Mn)). From these studies we conclude that: 1) sulfate might be a reasonable tracer of non-volatile species (EC, Fe, Cu, and Mn) and PM2.5 itself; 2) particulate nitrate and ammonium generally desorb to gaseous HNO3 and NH3 when they enter indoors, unless, as seldom happens, they have strong indoor sources; 3) indoor-originating semi-volatile organic compounds sorb on indoor PM2.5, thereby increasing the PM2.5 OC load. We suggest further studies on indoor-outdoor relationships of PM2.5 and constituents so as to help develop standards for healthy buildings.  相似文献   
789.
于2020年8月和11月,在中国西南某化工园区周边6个采样点采集环境空气样品,对5种典型苯系物(苯、甲苯、乙苯、邻二甲苯、间/对二甲苯)和7种典型卤代烃(三氯甲烷、三氯乙烯、四氯化碳、四氯乙烯、三溴甲烷、一溴二氯甲烷和二溴一氯甲烷)进行研究,明确了区域典型苯系物和卤代烃(BSHs)的污染特征,并评估其对人体的健康风险。结果表明:化工园区周边环境空气中苯系物检出率均 60%,卤代烃中除三溴甲烷、一溴二氯甲烷和二溴一氯甲烷外,检出率均 50%。苯系物和卤代烃的平均质量浓度分别为4.14~11.19μg/m~3和0.30~10.86μg/m~3。BSHs的浓度夏季低于冬季,这可能与人为的季节性燃烧源有关。苯、四氯化碳和四氯乙烯超过国际WELL建筑标准v2,全年超标率分别为3.33%,8.33%和11.67%。BSHs的非致癌和致癌风险均为成人儿童,成人和儿童的非致癌总风险分别为1.87×10~(-2)和1.26×10~(-2),处于可接受水平;成人和儿童的致癌风险分别为1.76×10~(-3)和1.19×10~(-3),处于不可接受水平。  相似文献   
790.
淮北市叶菜类蔬菜中硝酸盐含量的调查   总被引:1,自引:0,他引:1  
通过对淮北市近郊几个大的蔬菜生产基地叶菜类蔬菜中硝酸盐含量的分析,发现淮北市叶菜类蔬菜中硝酸盐含量普遍很高,且有超标状况存在。究其因,主要是化肥的过量使用,使蔬菜中的硝态氮不能及时还原,累积于体内。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号