首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   10篇
  国内免费   77篇
安全科学   3篇
废物处理   6篇
环保管理   2篇
综合类   99篇
基础理论   17篇
污染及防治   22篇
  2018年   1篇
  2017年   4篇
  2016年   6篇
  2015年   2篇
  2014年   10篇
  2013年   17篇
  2012年   14篇
  2011年   13篇
  2010年   7篇
  2009年   11篇
  2008年   22篇
  2007年   14篇
  2006年   11篇
  2005年   7篇
  2004年   5篇
  2003年   1篇
  2001年   1篇
  1999年   2篇
  1993年   1篇
排序方式: 共有149条查询结果,搜索用时 31 毫秒
41.
In this study, the effects of tetracycline exposure on wheat growth and the microbial community structure in the rhizosphere were investigated under hydroponic culture conditions. Exposure to various concentrations of tetracycline resulted in significant suppression of the growth of wheat roots and shoots, with minimum doses of 0.8 mg L?1 and 4 mg L?1 resulting in inhibition rates of 32% and 15.4%, respectively. Complete inhibition of the growth of these two parts of wheat plants was observed in response to treatment with tetracycline at 20 mg L?1 and 100 mg L?1, respectively. However, the germination of wheat seeds was not sensitive to exposure to tetracycline. The effects of tetracycline exposure on the microbial community in the wheat rhizosphere were evaluated through traditional cultivation and molecular biological analyses. The cultivation results indicated that bacteria were the dominant population, being present in concentrations of 1× 108–2.45× 109CFUs mL?1, although 39% to 87% inhibition occurred in response to tetracycline. The concentration of fungi increased in all tetracycline treated samples to 2.5 to 15.8 times that of the control. The highest concentration of fungi (4.27× 108 CFU mL?1) was observed in response to 60 mg L?1 tetracycline after 15 days of cultivation. In this stage, a large amount of fungal colonies was observed on the surface of the culture solution, the wheat roots became rotted and the plants became atrophic or even died. Molecular biological analysis indicated that the bacterial community structure was significantly different in samples that were exposed to high levels of tetracycline (over 20 mg L?1) than in samples that were exposed to lower concentrations. As the concentration of tetracycline increased, the diversity of the bacteria decreased. Additionally, several dominant sensitive species such as Sphingobacterium multivorum were suppressed by tetracycline, while some resistant species such as Acinetobacter sp. appeared or were conserved. The bacteria population tended to stabilize when the drug concentration exceeded 40 mg L?1.  相似文献   
42.
This investigation was undertaken to determine the impact of the insecticides Dursban 480 EC (with organophosphate compound chlorpyrifos as the active ingredient) and Talstar 10 EC (with pyrethroid bifenthrin as the active ingredient) on the respiration activity and microbial diversity in a sandy loam luvisol soil. The insecticides were applied in two doses: the maximum recommended dose for field application (15 mg kg?1 for Dursban 480 EC and 6 mg kg?1 for Talstar 10 EC) and a 100-fold higher dose for extrapolation of their effect. Bacterial and fungal genetic diversity was analysed in soil samples using PCR DGGE and the functional diversity (catabolic potential) was studied using BIOLOG EcoPlates at 1, 3, 7, 14, 28, 56 and 112 days after insecticide application. Five bacterial groups (α, β, γ proteobacteria, firmibacteria and actinomycetes) and five groups of fungi or fungus-like microorganisms (Ascomycota, Basidiomycota, Chytridiomycota, Oomycota and Zygomycota) were analysed using specific primer sets. This approach provides high resolution of the analysis covering majority of microorganisms in the soil. Only the high-dose Dursban 480 EC significantly changed the community of microorganisms. We observed its negative effect on α- and γ-proteobacteria, as the number of OTUs (operational taxonomic units) decreased until the end of incubation. In the β-proteobacteria group, initial increase of OTUs was followed by strong decrease. Diversity in the firmibacteria, actinomycetes and Zygomycota groups was minimally disturbed by the insecticide application. Dursban 480 EC, however, both positively and negatively affected certain species. Among negatively affected species Sphingomonas, Flavobacterium or Penicillium were detected, but Achromobacter, Luteibacter or Aspergillus were supported by applied insecticide. The analysis of BIOLOG plates using AWCD values indicated a significant increase in metabolic potential of microorganisms in the soil after the high-dose Dursban application. Analysis of respiration demonstrated high microbial activity after insecticide treatments; thus, microbial degradation was relatively fast. The half-life of the active insecticide compounds were estimated within the range of 25 to 27 days for Talstar and 6 to 11 days for Dursban and higher doses stimulated degradation. The recommended dose levels of both insecticides can be considered as safe for microbial community in the soil.  相似文献   
43.
We intended to find thermophilic degraders of terephthalate-containing Biomax® films. Films in mesh bags were buried in composts (inside temperature: approximately 55–60 °C), resulting in the degradation of them in 2 weeks. Fluorescent microscopy of films recovered from composts showed that microorganisms gradually covered the surface of a film during composting. DGGE analysis of microorganisms on the composted film indicated the presence of Bacillus species as main species (approximately 80% of microbial flora) and actinomycetes (approximately 10–20%) as the second major flora. Isolation of Biomax®-utilizing bacteria was focused on these two genera: two actinomycetes and one Bacillus species were isolated as pure best degraders from the composted polymer films, which were fragmented into small pieces. All the strains were thermophilic and identified, based on their 16S rDNA analyses. Degradation of polymer films was confirmed by (1) accelerated fragmentation of films in composts, compared with a control (no inoculum) and resultant decrease in molecular weights, (2) growth in a powdered Biomax® medium, compared with a control without powdered Biomax®, and (3) production of terephthalate in a powdered Biomax® medium. In this way, we concluded that these bacteria were useful for degradation of thermostable Biomax® products.  相似文献   
44.
聚合酶链式反应一变形梯度凝胶电泳(PCR—DGGE)作为一种分子指纹图谱能够较准确地反应污水处理过程中微生物群落结构多样性及其动态变化而广泛应用于废水生物处理技术的研究中。PCR—DGGE技术不仅能对样品中微生物群落结构多样性及种群演替进行分析,还能用于污水处理中优势菌群的分离与鉴定,克服了传统方法费时费力、培养条件苛刻等局限性,进而运用该技术构建高效的污染物降解工程菌,提高难降解有机物的去除效率,调节实际工艺参数,提高污水处理效率。  相似文献   
45.
To use the selective inhibition method for quantitative analysis of acetate metabolism in methanogenic systems,the responses of microbial communities and metabolic activities,which were involved in anaerobic degradation of acetate,to the addition of methyl fluoride(CH3F),2-bromoethanesulfonate(BES)and hydrogen were investigated in a thermophilic batch experiment.Both the methanogenic inhibitors,i.e.,CH3F and BES,showed their effectiveness on inhibiting CH4 production,whereas acetate metabolism other than acetoclastic methanogenesis was stimulated by BES,as reflected by the fluctuated acetate concentration.Syntrophic acetate oxidation was thermodynamically blocked by hydrogen(H2),while H2-utilizing reactions as hydrogenotrophic methanogenesis and homoacetogenesis were correspondingly promoted.Results of PCR-DGGE fingerprinting showed that,CH3F did not influence the microbial populations significantly.However,the BES and hydrogen notably altered the bacterial community structures and increased the diversity.BES gradually changed the methanogenic community structure by affecting the existence of different populations to different levels,whilst H2 greatly changed the abundance of different methanogenic populations,and induced growth of new species.  相似文献   
46.
秦皇岛近海养殖对潮间带微生物群落多样性的影响   总被引:1,自引:0,他引:1  
李佳霖  汪光义  秦松 《生态环境》2011,20(5):920-926
潮间带微生物群落在驱动海岸带生态系统物质循环和能量流动中具有重要作用,近海养殖造成的环境问题日益凸显,但其对潮间带微生物群落结构的影响还缺乏研究。采用变性梯度凝胶电泳(DGGE)和限制性片段长度多态性(RFLP)的分子生物学技术,研究秦皇岛养殖区与旅游区潮间带沉积物中微生物多样性的差异,分析养殖区微生物的16S rRNA基因文库的组成特征。结果表明:养殖区的微生物群落结构与旅游区形成较大的差异,DGGE图谱中养殖区的特有条带主要集中于γ-变形菌纲(γ-proteobacteria),还分布于α-变形菌纲(α-proteobacteria),拟杆菌门(Bacteroidetes),放线菌门(Actinobacteria)和厚壁菌门(Firmicutes)。影响潮间带微生物的群落结构的主要环境因子包括温度、盐度、pH和NO3-浓度,影响率达55.2%。对差异最大的洋河大桥南养殖区(Q1站)的微生物样品建立克隆文库分析群落结构,变形菌门(Proteobacteria)为优势菌群,占总群落的60%,其中γ-变形菌纲是主要存在的微生物纲,其余菌群包括放线菌门、拟杆菌门、蓝藻菌门(Cyanobacteria)和疣微菌门(Verrucomicrobia)的微生物。养殖区海岸带微生物群落中出现了与环境污染和赤潮密切相关的菌群,如拟杆菌门、肠杆菌属(Enterobacteriaceae)和α-变形细菌红细菌目(Roseovarius)的微生物。  相似文献   
47.
Dihydropteridine reductase (DHPR) is an enzyme involved in the recycling of tetrahydrobiopterin (BH4), which is an obligate co-factor of the aromatic amino acid hydroxylases. DHPR deficiency is a rare, autosomal recessive disorder caused by mutations in the QDPR gene. DHPR-deficient patients are diagnosed by a lack of response to a low phenylalanine diet and by severe neurological symptoms. Final diagnosis is made by measurements of neurotransmitters and pterin metabolites in cerebrospinal fluid (CSF) and urine, in addition to DHPR enzyme activity, which can be assessed in whole red blood cells. Treatment of DHPR deficiency can be difficult and the outcome is not always satisfying, even if all treatment strategies are followed. Therefore prenatal diagnosis is of great importance in affected families. Prenatal diagnosis is possible by measuring DHPR activity in different cell types but this is time consuming. More than 25 different mutations have to date been identified in the QDPR gene and direct identification of a mutation in a fetus would be easy and rapid. We have developed a method based on denaturing gradient gel electrophoresis (DGGE) for the analysis of the QDPR gene. The method is useful for rapid and simultaneous scanning of all exons and flanking intronic sequences of the QDPR gene. We describe the first prenatal diagnosis conducted using this method. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
48.
In this study, the authors have investigated the effects of various factors on both aerobic and anaerobic degradation of 4-t-octylphenol (4-t-OP) in granular sludge. In comparison, the aerobic degradation rate was much higher than that of anaerobic degradation. The optimal pH values for 4-t-OP degradation in granular sludge were 9 and 7 under aerobic and anaerobic conditions, respectively. And the degradation rate decreased with an increase in the initial 4-t-OP concentration. Addition of yeast extract or homologous compounds such as phenol also enhanced the 4-t-OP degradation, especially under the aerobic condition. To investigate the bacterial community in this study, the denaturing gradient gel electrophoresis (DGGE) method was applied, based on the primers, for the 16S rDNA V3 region of bacteria, γ-proteobacteria and bacillus were identified as the major species of sludge.  相似文献   
49.
The characterization of microbial communities of different depth sediment samples was examined by a culture-independent method and compared with physicochemical parameters, those are organic matter (OM), total nitrogen (TN), total phosphorus (TP), pH and redox potential (Eh). Total genomic DNA was extracted from samples derived from different depths. After they were amplified with the GC-341 f/907r primer sets of partial bacterial 16S rRNA genes, the products were separated by denaturing gradient gel electrophoresis (DGGE). The profile of DGGE fingerprints of different depth sediment samples revealed that the community structure remained relatively stable along the entire 45 cm sediment core, however, principal-component analysis of DGGE patterns revealed that at greater sediment depths, successional shifts in community structure were evident. The principle coordinates analysis suggested that the bacterial communities along the sediment core could be separated into two groups, which were located 0-20 cm and 21-45 cm, respectively. The sequencing dominant bands demonstrated that the major phylogenetic groups identified by DGGE belonged to Bacillus, Bacterium, Brevibacillus, Exiguobacterium, γ-Proteobacterium, Acinetobacter sp. and some uncultured or unidentified bacteria. The results indicated the existence of highly diverse bacterial community in the lake sediment core.  相似文献   
50.
In order to monitor the changes of Microcystis along with temporal and spatial variations, seasonal variation of Microcystis in Lake Taihu was investigated by 16S-23S rRNA internal transcribed spacer denaturing gradient gel electrophoresis (16S-23S rRNA-ITS DGGE) and microscopic evaluation. Samples were collected quarterly at four sites (River Mouth, Meiliang Bay, Cross Area, and Lake Center) from August 2006 to April 2007. Results showed that Microcystis dominated total phytoplankton abundance at the four sites in all seasons except winter. The average annual abundance of Microcystis was relatively high at River Mouth and Meiliang Bay, reaching 81.22×106 and 61.32×106 cells/L, respectively. For temporal variations, Shannon-Wiener diversity index (H') according to DGGE profile revealed the richness of Microcystis in summer (H'=1.375±0.034) and winter (H'=1.650±0.032) was lower than that in spring (H'=2.078±0.031) and autumn (H'=2.365±0.032) (P<0.05). While for spatial variations, the richness of Microcystis at River Mouth (H'=2.015±0.074) was higher than at other sites during four seasons (P<0.01). Very few differences of Microcystis diversity in the same season were observed among the other three sites (P>0.05). Canonical correspondence analysis (CCA) was performed to elucidate the relationships between Microcystis operational taxonomic units (OTUs) composition and the environmental factors. Results of CCA revealed that temperature was strongly positively correlated with the first axis (r=0.963), while TSS was negative correlated with the second axis (r=-0.716). Phylogenetic tree based on the sequencing results of target bands on DGGE gel indicated that samples collected in summer and winter constituted two separated clusters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号