首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   14篇
  国内免费   25篇
安全科学   5篇
废物处理   2篇
环保管理   110篇
综合类   58篇
基础理论   6篇
污染及防治   21篇
评价与监测   15篇
社会与环境   3篇
  2023年   3篇
  2022年   1篇
  2021年   4篇
  2020年   6篇
  2019年   5篇
  2018年   6篇
  2017年   4篇
  2016年   1篇
  2015年   8篇
  2014年   3篇
  2013年   7篇
  2012年   12篇
  2011年   5篇
  2010年   6篇
  2009年   10篇
  2008年   11篇
  2007年   14篇
  2006年   7篇
  2005年   3篇
  2004年   8篇
  2003年   10篇
  2002年   4篇
  2001年   6篇
  2000年   6篇
  1999年   11篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   5篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1983年   3篇
  1982年   3篇
  1981年   4篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1977年   2篇
  1975年   1篇
  1973年   2篇
  1972年   4篇
  1971年   2篇
  1970年   1篇
排序方式: 共有220条查询结果,搜索用时 15 毫秒
81.
The natural complexity, heterogeneity, and extent of transboundary aquifers around the world, have led to controversy over which method or criteria should be used to identify and delineate their boundaries. Currently, there is no standard methodology that aquifer‐sharing countries can use to delineate the area of a transboundary aquifer. In the case of Mexico and Texas, Mexico uses administrative boundaries, whereas Texas uses geological boundaries. This paper proposes a method for delineation and prioritization of aquifers (or aquifer areas) called effective transboundary aquifer areas (ETAAs), which uses a combination of physical criteria (geological boundaries, topography, and hydrography) and the location and density of active water wells in the borderland between Mexico and Texas. This method identifies the area of priority (productivity area) in the aquifer using pumping patterns or hot spots regardless of the aquifer’s surficial geological limits, therefore offering a more effective, local and practical management option at the transboundary level. Different geological features or pumping patterns will have different sizes and locations of ETAAs within the same aquifer. In West Texas, which is dominated by bolsons, the method produces limited options for ETAAs, whereas in South Texas in the easternmost border the identified ETAAs are more significant.  相似文献   
82.
Assessing groundwater resources in the arid and semiarid borderlands of the United States and Mexico represents a challenge for land and water managers, particularly in the Transboundary Santa Cruz Aquifer (TSCA). Population growth, residential construction, and industrial activities have increased groundwater demand in the TSCA, in addition to wastewater treatment and sanitation demands. These activities, coupled with climate variability, influence the hydrology of the TSCA and emphasize the need for groundwater assessment tools for decision‐making purposes. This study assesses the impacts of changes in groundwater demand, effluent discharge, and climate uncertainties within the TSCA from downstream of the Nogales International Wastewater Treatment Plant to the northern boundary of the Santa Cruz Active Management Area. We use a conceptual water budget model to analyze the long‐term impact of the different components of potential recharge and water losses within the aquifer. Modeling results project a future that ranges from severe long‐term drying to positive wetting. This research improves the understanding of the impact of natural and anthropogenic variables on water sustainability, with an accessible methodology that can be globally applied.  相似文献   
83.
石油烃污染会对人类生存的环境造成严重危害,地下水系统中石油烃污染物的研究已受到国内外的高度重视。本文针对某石油烃污染场地的污染状况及水文地质条件,利用模拟柱实验研究石油烃中常见组分苯和菲在典型含水层中的迁移转化,实验结果表明,苯和菲在4种含水层介质中(粉砂、中砂、粗砂、砾砂)受到的迁移阻滞作用都是随着粒径的减小而增大。菲在4种介质中的迁移速率要小于苯,说明4种介质对菲的阻滞作用要大于苯。通过检测各模拟柱出水中Fe2+、Fe3+、NH4+-N和NO3--N浓度的变化可知,在苯和菲的砾砂模拟柱中,由于水流速度快,试验周期短,模拟柱内各项指标变化较小,生物作用较弱;而在苯和菲的粗砂、中砂和粉砂模拟柱中,NO3--N浓度减少,NH4+-N和Fe3+含量增加,说明微生物开始利用NO3--N和Fe3+降解苯和菲,微生物对苯和菲在粗砂、中砂和粉砂中的迁移转化过程有显著的作用。  相似文献   
84.
The distributions of 238U and 234U in groundwater from the “Jeffara aquifer” were studied by using alpha spectrometric methods. The concentration ranges of 238U and 234U/238U activity ratios were 1.34 ± 0.17 to 3.43 ± 0.38 ppb, and 1.43 ± 0.23 to 1.82 ± 0.27 respectively. Variations in concentrations can be related not only to lithostratigraphic formations but also to different origins of groundwater. U content of Jeffara are found very similar to those of Continental Intercalaire aquifer in both El Hamma and Chenchou regions, indicating that the Continental Intercalaire is the dominant source of the groundwater.  相似文献   
85.
Simulating Nitrate Leaching Profiles in a Highly Permeable Vadose Zone   总被引:2,自引:0,他引:2  
An approach is developed to simulate leaching of a dissolved chemical constituent in the vadose zone of an aquifer. Specifically, nitrate loading at the water table for different water table depths, for a range of aquifer permeability values, and for different cases of heterogeneity of the aquifer, are considered. Models from the literature are first used to derive soil–water characteristic curves (water retention and hydraulic conductivity) from a grain size distribution curve for unsaturated conditions. Given infiltration from the surface, the initial conditions for the chemical concentration, and the water content profile, leaching of the chemical in the vadose zone is simulated as a function of both time and depth. The methodology is illustrated for a permeable aquifer. Simulations are undertaken using a finite element code for saturated and unsaturated flow. Different scenarios are simulated depending on the heterogeneity of the aquifer and the depth of the water table. Modeling results show that in the example case studied, nitrate concentration loading at the water table does not depend strongly on the position of the water table, but rather on the material properties of the aquifer. The contribution of this endeavor resides in the methodology which allows a prediction of nitrate leaching using only the grain size property of the aquifer. It allows practitioners to obtain a first assessment of leaching with limited data.  相似文献   
86.
The CO2SINK pilot project at Ketzin is aimed at a better understanding of geological CO2 storage operation in a saline aquifer. The reservoir consists of fluvial deposits with average permeability ranging between 50 and 100 mDarcy. The main focus of CO2SINK is developing and testing of monitoring and verification technologies. All wells, one for injection and two for observation, are equipped with smart casings (sensors behind casing, facing the rocks) containing a Distributed Temperature Sensing (DTS) and electrodes for Electrical Resistivity Tomography (ERT). The in-hole Gas Membrane Sensors (GMS) observed the arrival of tracers and CO2 with high temporal resolution. Geophysical monitoring includes Moving Source Profiling (MSP), Vertical Seismic Profiling (VSP), crosshole, star and 4-D seismic experiments. Numerical models are benchmarked via the monitoring results indicating a sufficient match between observation and prediction, at least for the arrival of CO2 at the first observation well. Downhole samples of brine showed changes in the fluid composition and biocenosis. First monitoring results indicate anisotropic flow of CO2 coinciding with the “on-time” arrival of CO2 at observation well one (Ktzi 200) and the later arrival at observation well two (Ktzi 202). A risk assessment was performed prior to the start of injection. After one year of operations about 18,000 t of CO2 were injected safely.  相似文献   
87.
Saline aquifers of high permeability bounded by overlying/underlying seals may be surrounded laterally by low-permeability zones, possibly caused by natural heterogeneity and/or faulting. Carbon dioxide (CO2) injection into and storage in such “closed” systems with impervious seals, or “semi-closed” systems with non-ideal (low permeability) seals, is different from that in “open” systems, from which the displaced brine can easily escape laterally. In closed or semi-closed systems, the pressure buildup caused by continuous industrial-scale CO2 injection may have a limiting effect on CO2 storage capacity, because geomechanical damage caused by overpressure needs to be avoided. In this research, a simple analytical method was developed for the quick assessment of the CO2 storage capacity in such closed and semi-closed systems. This quick-assessment method is based on the fact that native brine (of an equivalent volume) displaced by the cumulative injected CO2 occupies additional pore volume within the storage formation and the seals, provided by pore and brine compressibility in response to pressure buildup. With non-ideal seals, brine may also leak through the seals into overlying/underlying formations. The quick-assessment method calculates these brine displacement contributions in response to an estimated average pressure buildup in the storage reservoir. The CO2 storage capacity and the transient domain-averaged pressure buildup estimated through the quick-assessment method were compared with the “true” values obtained using detailed numerical simulations of CO2 and brine transport in a two-dimensional radial system. The good agreement indicates that the proposed method can produce reasonable approximations for storage–formation–seal systems of various geometric and hydrogeological properties.  相似文献   
88.
The Seymour aquifer region of Texas has been identified as containing elevated levels of nitrate in ground water. Various state and federal agencies are currently studying policy options for the region by gathering more site-specific information. However, because of lack of sufficient information, cause and effect relationships between water quality and agricultural practices have not been well established for the region. Some recently available biophysical simulation models have impressive capabilities in generating large amounts of data on environmental pollution resulting from agricultural production practices. In this study, the data generated by a biophysical simulation model were used to estimate the nitrate percolation response functions for the Seymour aquifer region. Interestingly, nitrate percolation values obtained from simulation models often comprise acensoredsample because the non-zero percolation values are only observed under certain climatic events and input levels. It has been shown in the econometric literature that the use of Ordinary Least Squares (OLS) on censored sample data produces biased and inconsistent parameter estimates. Thus, a sample selection model was used in this study to estimate the response functions for nitrate percolation. The study provides some insight into the relationship between nitrate percolation and agricultural production practices. In particular, the study demonstrates the potential of selected design standards in minimizing agricultural nonpoint-source (NPS) pollution for the study area.  相似文献   
89.
Abstract: A nine‐layered confined‐unconfined flow and transport model is developed for the Alamitos saltwater intrusion barrier in Southern California. The conceptual model is based on the geological structure of the coastal aquifer system. The key parameters in the flow and transport models are calibrated using a two‐phase procedure which matches the types of data available for calibration. Because of the abundance of point measurements of hydraulic conductivity, the heterogeneous and random hydraulic conductivity field for each of the five aquifers is estimated by the geostatiscal method of natural‐neighbor‐kriging in Phase 1. In Phase 2, the longitudinal and transverse dispersivities in the transport model are estimated by a traditional inverse procedure that minimizes the least‐squares error for concentration (LSE‐CON). The minimum LSE‐CON is achieved near 15.2 and 1.52 m for the longitudinal and transverse dispersivities, respectively. Additional simulations with increasing transport parameter complexity did not yield significant improvements in LSE‐CON. Also, tracking least‐squares error for head while parametrically varying the transport parameters revealed there is a negligible interaction between predicted head and transport parameters.  相似文献   
90.
ABSTRACT. Owing to their enormous capacity, ground-water reservoirs are at least equal in importance to the ground water itself. As regulators of water movement in the hydrological cycle, these reservoirs surpass all lakes combined, natural and manmade. While many aquifers are not well understood, data on many others are adequate for long-range broad-scale planning. An example is the basalt aquifer of the Snake River Plain in Idaho. However, the area has managerial problems which concern the time, the place and the feasibility of manipulations of water. All continents of the world contain great aquifers. For every huge aquifer, however, hundreds of smaller ones occur, and even these contain astonishing amounts of water. Aquifers in the Ohio River Basin of the United States are good examples. Management of total water resources is a difficult problem at many places. But many problems could be met and many water shortages alleviated or eliminated by use of aquifers, not merely as sources of water, but as reservoirs for management of water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号