首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   7篇
  国内免费   49篇
安全科学   3篇
废物处理   11篇
环保管理   14篇
综合类   97篇
基础理论   46篇
污染及防治   39篇
评价与监测   8篇
  2023年   5篇
  2022年   5篇
  2021年   6篇
  2020年   8篇
  2019年   6篇
  2018年   7篇
  2017年   6篇
  2016年   6篇
  2015年   8篇
  2014年   11篇
  2013年   21篇
  2012年   8篇
  2011年   12篇
  2010年   7篇
  2009年   7篇
  2008年   14篇
  2007年   19篇
  2006年   7篇
  2005年   6篇
  2004年   5篇
  2003年   6篇
  2002年   8篇
  2001年   1篇
  2000年   4篇
  1999年   7篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1993年   2篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1984年   1篇
  1981年   1篇
排序方式: 共有218条查询结果,搜索用时 15 毫秒
51.
52.
通过辽宁省地质构造解译图和辽宁省地质灾害遥感解译图这两个电子地图的制作,说明了电子地图制作的工具选择、制作方法、关键技术以及地图应用等。体现了地理信息系统这一现代化科技手段在防灾、减灾和地质环境的整治与保护方面的价值。  相似文献   
53.
Introduction The membrane bioreactors (MBRs) have shown many advantages over conventional activated sludge processes, which apply membrane modules instead of the secondary settle tank to make a better separation of the solids and liquid and have been grea…  相似文献   
54.
• A novel Z-scheme Si-SnO2-TiOx with SnO2 as electron mediator is first constructed. • Transparent and conductive SnO2 can pass light through and promote charge transport. • VO from SnO2 and TiOx improve photoelectrochemical performances. • Efficient photocatalytic degradations originate from the Z scheme construction. Z-scheme photocatalysts, with strong redox ability, have a great potential for pollutants degradation. However, it is challenging to construct efficient Z-scheme photocatalysts because of their poor interfacial charge separation. Herein, by employing transparent and conductive SnO2 as electron mediator to pass light through and promote interfacial charge transportation, a novel Z-scheme photocatalyst Si-SnO2-TiOx (1<x<2) was constructed. The Z-scheme photocatalyst displayed an order of magnitude higher photocurrent density and a 4-fold increase in open-circuit potential compared to those of Si. Moreover, the onset potential shifted negatively for approximately 2.2 V. Benefiting from these advantages, this Z-scheme Si-SnO2-TiOx exhibited efficient photocatalytic performance toward phenol degradation and mineralization. 75% of the phenol was degraded without bias potential and 70% of the TOC was removed during phenol degradation. Other typical pollutants such as bisphenol A and atrazine could also be degraded without bias potential. Introducing a transparent and conductive electron mediator to construct Z-scheme photocatalyst gives a new sight to the improvement of photocatalytic performance in Z scheme.  相似文献   
55.
• Dual-reaction-center (DRC) system breaks through bottleneck of Fenton reaction. • Utilization of intrinsic electrons of pollutants is realized in DRC system. • DRC catalytic process well continues Fenton’s story. Triggered by global water quality safety issues, the research on wastewater treatment and water purification technology has been greatly developed in recent years. The Fenton technology is particularly powerful due to the rapid attack on pollutants by the generated hydroxyl radicals (•OH). However, both heterogeneous and homogeneous Fenton/Fenton-like technologies follow the classical reaction mechanism, which depends on the oxidation and reduction of the transition metal ions at single sites. So even after a century of development, this reaction still suffers from its inherent bottlenecks in practical application. In recent years, our group has been focusing on studying a novel heterogeneous Fenton catalytic process, and we developed the dual-reaction-center (DRC) system for the first time. In the DRC system, H2O2 and O2 can be efficiently reduced to reactive oxygen species (ROS) in electron-rich centers, while pollutants are captured and oxidized by the electron-deficient centers. The obtained electrons from pollutants are diverted to the electron-rich centers through bonding bridges. This process breaks through the classic Fenton mechanism, and improves the performance and efficiency of pollutant removal in a wide pH range. Here, we provide a brief overview of Fenton’s story and focus on combing the discovery and development of the DRC technology and mechanism in recent years. The construction of the DRC and its performance in the pollutant degradation and interfacial reaction process are described in detail. We look forward to bringing a new perspective to continue Fenton’s story through research and development of DRC technology.  相似文献   
56.
Objective This study was done to estimate whether heavy metals in the air may affect endometrial chemical composition. Materials and Methods A total of 30 albino Wistar rats were employed and randomly divided into three groups. The rats of Group 1 and 2 were acutely and sub-chronically exposed to the gas form of heavy metals, respectively. Group 3 was used as a control group. Endometrial tissue worth of heavy metals of the groups was measured in through using scanning electron microscope. Results A statistically no significant difference was found for endometrial chemical composition of all of the heavy metals (chrome, manganese, iron, cobalt, nickel, zinc and lead) between group 1 and 2 (p > 0.05). On the other hand, there was statistically significant difference for all of the heavy metals between group 1 and group 3 (p < 0.05), while there was statistically significant difference for chrome, manganese, iron, cobalt and nickel (p < 0.05), but zinc and lead (p > 0.05) between group 2 and 3. Conclusion Air pollutants of Pb and Zn resulting mostly from combustion of fossil fuels and certain special industrial process in Kirikkale may be a risk factor for the high pregnancy loses by changing endometrial homeostasis.  相似文献   
57.
Zhang B  Zhang H  Jin J  Ni Y  Chen J 《Chemosphere》2012,88(7):798-805
Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) are ubiquitous contaminants and can be considerably accumulated by natural plants. In order to elucidate the biochemical and physiological responses of plant to PCDD/Fs, tobacco Bright Yellow-2 (BY-2) cells were selected as model plant and treated with time- and concentration-dependent PCDD/Fs. The toxic effect and oxidative stress caused by PCDD/Fs were evident, which could be indicted by the reduction in fresh mass, the increase in malondialdehyde (MDA) content, and the damage of tobacco cell ultrastructure. PCDD/Fs tolerance was correlated with changes in antioxidant system and hormones of tobacco cells. Superoxide dismutase (SOD) and peroxidase (POD) exhibited peak enzyme activities at the PCDD/Fs concentration of 1000 ng WHO98-TEQ g−1 fresh weight. Glutathione reductase (GR) enzyme activity increased monotonically at high level PCDD/Fs, but the activity of catalase (CAT) was only slightly affected at all treatment. Meanwhile, the exposure to PCDD/Fs resulted in the changes of hormones content. With the increase of exposure concentration of PCDD/Fs, the levels of indole-3-acetic acid (IAA) and abscisic acid (ABA) increased, whereas the concentration of jasmonates (JAs) decreased. The above results suggest that tobacco cells had the ability to cope with the oxidative stress induced by low concentration of PCDD/Fs through increasing the activities of antioxidant enzymes and alternating plant hormones levels. However, oxidative stress and toxicity would burst out when plant cells were exposed to the high levels of PCDD/Fs.  相似文献   
58.
Christen V  Fent K 《Chemosphere》2012,87(4):423-434
Engineered silica nanoparticles (SiO2-NPs) find widespread application and may lead to exposure of humans and the environment. Here we compare the effects of SiO2-NPs and SiO2-NPs doped with silver (SiO2-Ag-NPs) on survival and cellular function of human liver cells (Huh7) and Pimephales promelas (fathead minnow) fibroblast cells (FMH). In Huh7 cells we investigate effects on the endoplasmatic reticulum (ER), including ER stress, and interactions of nanoparticles (NPs) with metabolizing enzymes and efflux transporters. The NPs formed agglomerates/aggregates in cell culture media as revealed by SEM and TEM. SiO2 and SiO2-1% Ag-NPs were taken up into cells as demonstrated by agglomerates occurring in vesicular-like structures or freely dispersed in the cytosol. Cytotoxicity was more pronounced in Huh7 than in FMH cells, and increased with silver content in silver-doped NPs. Dissolved silver was the most significant factor for cytotoxicity. At toxic and non-cytotoxic concentrations SiO2-NPs and SiO2-1% Ag-NPs induced perturbations in the function of ER. In Huh7 cells NPs induced the unfolded protein response (UPR), or ER stress response, as demonstrated in induced expression of BiP and splicing of XBP1 mRNA, two selective markers of ER stress. Additionally, SiO2-1% Ag-NPs and AgNO3 induced reactive oxygen species. Pre-treatment of Huh7 cells with SiO2-1% Ag-NPs followed by exposure to the inducer benzo(a)pyrene caused a significant reduced induction of CYP1A activity. NPs did not alter the activity of ABC transporters. These data demonstrate for the first time that SiO2-NPs and SiO2-1% Ag-NPs result in perturbations of the ER leading to the ER stress response. This represents a novel and significant cellular signalling pathway contributing to the cytotoxicity of NPs.  相似文献   
59.
60.
The effect of elevated CO2 and O3 on apparent quantum yield (?), maximum photosynthesis (Pmax), carboxylation efficiency (Vcmax) and electron transport capacity (Jmax) at different canopy locations was studied in two aspen (Populus tremuloides) clones of contrasting O3 tolerance. Local light climate at every leaf was characterized as fraction of above-canopy photosynthetic photon flux density (%PPFD). Elevated CO2 alone did not affect ? or Pmax, and increased Jmax in the O3-sensitive, but not in the O3-tolerant clone. Elevated O3 decreased leaf chlorophyll content and all photosynthetic parameters, particularly in the lower canopy, and the negative impact of O3 increased through time. Significant interaction effect, whereby the negative impact of elevated O3 was exaggerated by elevated CO2 was seen in Chl, N and Jmax, and occurred in both O3-tolerant and O3-sensitive clones. The clonal differences in the level of CO2 × O3 interaction suggest a relationship between photosynthetic acclimation and background O3 concentration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号