首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   0篇
  国内免费   4篇
安全科学   1篇
废物处理   3篇
环保管理   7篇
综合类   20篇
基础理论   13篇
污染及防治   12篇
评价与监测   3篇
社会与环境   1篇
  2021年   1篇
  2020年   1篇
  2017年   2篇
  2015年   2篇
  2014年   5篇
  2013年   2篇
  2012年   1篇
  2011年   6篇
  2010年   4篇
  2009年   9篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
  1993年   3篇
  1992年   4篇
排序方式: 共有60条查询结果,搜索用时 33 毫秒
21.
Agriculture can be a major nonpoint source (NPS) of nutrient and pesticide contamination in the environment. Available databases do not provide accurate and dynamic data on fertilizer and pesticide application, which limits the ability of complex watershed models to simulate contaminant loads into impaired water bodies. A model for estimating agricultural nutrient and pesticide input for watershed modeling has been developed. Climate, soils, and major agricultural operations are considered within the model, so that it can be adapted to any watershed or subregion within a watershed. The timing of the agricultural operations is a function of the weather data, providing realistic results at daily, monthly, or annual application rates. The model also predicts irrigation demand and biomass production, which can be used to calibrate the model. Model output can be used in any watershed model that considers agricultural land uses. Two case studies were evaluated, using grape vineyards in the Napa River and strawberry production in Newport Bay as examples. The predicted time to maturity corresponded well with actual data. Irrigation and fertilizer needs were very sensitive to weather input. Although the model can generate weather from long-term averages, the simulated results are best when at least observed precipitation and temperature are provided, to capture extreme events. The model has data for 98 crops and 126 pesticides, based on the California Department of Pesticide Regulation database. The databases are easily modifiable by the user to adapt them to local conditions. The output from AgInput is much needed for watershed modeling and for development of total maximum daily loads (TMDLs), based on realistic targets of irrigation, nutrient, and pesticide inputs. The model is available for free download at .  相似文献   
22.
Here we present an uncertainty analysis of NH3 emissions from agricultural production systems based on a global NH3 emission inventory with a 5×5 min resolution. Of all results the mean is given with a range (10% and 90% percentile). The uncertainty range for the global NH3 emission from agricultural systems is 27–38 (with a mean of 32) Tg NH3-N yr−1, N fertilizer use contributing 10–12 (11) Tg yr−1 and livestock production 16–27 (21) Tg yr−1. Most of the emissions from livestock production come from animal houses and storage systems (31–55%); smaller contributions come from the spreading of animal manure (23–38%) and grazing animals (17–37%). This uncertainty analysis allows for identifying and improving those input parameters with a major influence on the results. The most important determinants of the uncertainty related to the global agricultural NH3 emission comprise four parameters (N excretion rates, NH3 emission rates for manure in animal houses and storage, the fraction of the time that ruminants graze and the fraction of non-agricultural use of manure) specific to mixed and landless systems, and total animal stocks. Nitrogen excretion rates and NH3 emission rates from animal houses and storage systems are shown consistently to be the most important parameters in most parts of the world. Input parameters for pastoral systems are less relevant. However, there are clear differences between world regions and individual countries, reflecting the differences in livestock production systems.  相似文献   
23.
三高农业与土壤和肥料有密切的关系。地力是作物产量的重要基础,要取得高产,就必须坚持不懈地培肥地力。综合地力、土壤中营养元素及有害或有毒物质的含量、肥料类型和施肥技术,都对农产品的品质有很大的影响。要提高农产品的产量和质量,就要因土种植,合理施肥。高产优质是经济效益的主要构成因素,因而,培肥地力、因土种植、合理施肥能提高经济效益。忽视土肥工作,将影响三高农业的发展。  相似文献   
24.
Carbon content in soils changes depending on the land use system, type of management practice and time. There is an increasing concern about the soil quality vis-à-vis organic carbon content in soils due to global warming and enhanced CO2 concentration in the atmosphere. This has led to estimate carbon stock in soils at global and regional levels. The objective of the present study was to evaluate RothC model to estimate total organic carbon (TOC) changes under four long term fertilizer experimental sites representing sub-humid moist (Sarol and Nabibagh), sub-humid dry (Panjri) and semi-arid (Teligi) climate in India. The plant carbon input rate was calibrated using organic carbon and other soil parameters using RothC. The results showed that RothC could simulate changes in TOC in two contrasting eco-sites for surface soil layers. The root mean square error (RMSE) considered as modelling error ranged from 11.50 to 15.01, 4.70 to 11.60, 2.14 to 6.52 and 1.45 to 13.74 in the surface layers of Sarol, Nabibagh, Panjri, and Teligi sites, respectively. The simulation biases expressed by M (relative error) by Student‘t’ value for all the treatments at these sites were non-significant with two exceptions. Observed trends in TOC consist of an increase for all the four treatments in the sub-humid site of Sarol and Nabibagh; while manures alone or in combination increase TOC appreciably in Teligi and Panjri. TOC remained, however, almost similar over years for the control (no fertilizer or manure) and NPK treatments in all the four sites. Analysis of RothC output data showed that this model could be used as a tool to arrive at different threshold values of rainfall to influence decomposition rate modifier and thus to find out rate of organic carbon sequestration in various bioclimatic systems.  相似文献   
25.
通过优化塔西南化肥厂合成氨装置的蒸汽系统和电力工程部的锅炉运行模式,新增外购4.2MPa蒸汽用量,在实现快装锅炉停运的同时送出富余的1.6MPa蒸汽,达到能源梯级循环利用,从而为自身装置和厂际间共同实现节能降耗进行了有益探索,并取得可观的经济效益和社会效益。  相似文献   
26.
Bénin, like other countries in sub-Saharan Africa, has initiated programs to reform agricultural input and output markets. While the impact of the reform programs has been different for each country, it is commonly observed that impact at the farm level has been less than anticipated. A central theme of this paper is to assess the impact of fertilizer market reforms on the fertilizer market structure and fertilizer use for both food and export (cotton) crop production in Bénin. This analysis of farm-level policy impact is based on data from 899 farm households randomly selected and interviewed in all six départements of Bénin in 1998/1999. Results of the study show that there have been only insignificant changes in the fertilizer market structure. Access to fertilizers has not improved; prices for fertilizer have risen in real terms, resulting in application rates lower than that recommended by extension agents. The effects of the reform programs are vital for investment decisions and provide lessons for introducing alternative approaches for improving soil fertility or management. Since 1992, 54% of farmers find maize (Zea mays L.) production more profitable, while 38% reported that cotton (Gossypium hirsutum L.) production has become more profitable. As a result of the mixed effects of the fertilizer market reform program on the level of fertilizer use and profitability, there is need to develop efficient soil fertility management strategies for small-scale farmers. Such strategies should incorporate the use of complementary inputs, such as seeds with a high level of response to the balanced nutrient package.  相似文献   
27.
Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stable heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55 °C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments.  相似文献   
28.
通过盆栽强化试验研究了树脂包衣肥料残膜对土壤容重及作物生长及土壤外观的影响;研究了光降解残膜在自然光下的降解;并探讨了残膜在土壤中的降解与积累模式。结果表明,土壤中残膜含量在0.1%~0.2%范围内时,对作物生长没有负面影响,甚至随着积累量的增加,还有增加作物产量的倾向,但随着土壤中残膜量的增加,对土壤外观有一定影响。添加光降解剂可以显著加快残膜的降解。由于降解现象的存在,残膜在土壤中的量不会无限制增加,而是呈抛物线型积累。残膜在表层土壤中积累的最大量不会超过某一临界值,该值的大小由每年包衣肥料的施用量、残膜露出土表的比例及降解量、损失量决定。  相似文献   
29.
• The boron concentration in diluted DS can satisfy the irrigation water standard. • The boron concentration in diluted DS equaled that in two-pass RO permeate. • FDFO process SEC was slightly lower than the 2nd pass RO SEC. • FDFO has potential as an alternative to 2nd pass RO for irrigation water production. Agriculture is the largest consumer of freshwater. Desalinated seawater is an important alternative water source for sustainable irrigation. However, some issues of the current desalination technology hinder its use for agriculture irrigation, including low boron removal and high energy consumption. This study systematically explored the feasibility of employing fertilizer drawn forward osmosis (FDFO) as an alternative to 2nd pass reverse osmosis (RO) by considering the boron removal performance and specific energy consumption (SEC). Different operating conditions were investigated, such as the boron and NaCl concentrations in feed solution (FS), draw solution (DS) concentration, pH, the volume ratio of FS to DS, membrane orientation, flow rate, and operating temperature. The results indicated that a low boron concentration in FS and high pH DS (pH= 11.0) decreased the boron solute flux, and led to low final boron concentration in the DS. The other operating conditions had negligible influence on the final DS boron concentration. Also, a lower flow rate and higher specific water flux with certain permeate water volumes were conducive to reducing the SEC of the FDFO process. Overall, our study paves a new way of using FDFO in irrigation, which avoids the phytotoxicity and human health risk of boron. The results show the potential of FDFO as an alternative to 2nd pass RO for irrigation water production.  相似文献   
30.
Micronutrient malnutrition is a major health problem in China. According to a national nutritional survey, approximately 24% of all Chinese children suffer from a serious deficiency of iron (Fe) (anemia), while over 50% show a sub-clinical level of zinc (Zn) deficiency. More than 374 million people in China suffer from goiter disease, which is related to iodine (I) deficiency, and approximately 20% of the Chinese population are affected by selenium (Se) deficiency. Micronutrient malnutrition in humans is derived from deficiencies of these elements in soils and foods. In China, approximately 40% of the total land area is deficient in Fe and Zn. Keshan and Kaschin-Beck diseases always appear in regions where the soil content of Se in low. The soil–plant system is instrumental to human nutrition and forms the basis of the “food chain” in which there is micronutrient cycling, resulting in an ecologically sound and sustainable flow of micronutrients. Soil-plant system strategies that have been adopted to improve human micronutrient nutrition mainly include: (1) exploiting micronutrient-dense crop genotypes by studying the physiology and genetics of micronutrient flow from soils to the edible parts of crops; (2) improving micronutrient bioavailability through a better knowledge of the mechanisms of the enhancers’ production and accumulation in edible parts and its regulation through soil-plant system; (3) improving our knowledge of the relationship between the content and bioavailability of micronutrients in soils and those in edible crop products for better human nutrition; (4) developing special micronutrient fertilizers and integrated nutrient management technologies for increasing both the density of the micronutrients in the edible parts of plants and their bioavailability to humans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号