首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   264篇
  免费   4篇
  国内免费   5篇
安全科学   194篇
废物处理   3篇
环保管理   5篇
综合类   25篇
基础理论   3篇
污染及防治   13篇
评价与监测   29篇
灾害及防治   1篇
  2023年   18篇
  2022年   6篇
  2021年   24篇
  2020年   29篇
  2019年   13篇
  2018年   5篇
  2017年   4篇
  2016年   12篇
  2015年   24篇
  2014年   10篇
  2013年   20篇
  2012年   11篇
  2011年   14篇
  2010年   4篇
  2009年   3篇
  2008年   4篇
  2007年   12篇
  2006年   3篇
  2005年   7篇
  2004年   6篇
  2003年   7篇
  2002年   3篇
  2001年   6篇
  2000年   9篇
  1999年   3篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1989年   1篇
排序方式: 共有273条查询结果,搜索用时 15 毫秒
261.
The recognition of toxicity and environmental persistence of halogenated flame retardant (FR) materials has prompted the reduction in their usage across the globe. There is an immediate need for new types of non-toxic and effective FR produced preferably through sustainable routes. Here we report the synthesis and characterization of a new polyphenolic FR material based on a renewable and biodegradable starting material, cardanol (a byproduct of cashew nut processing). Cardanol was polymerized in aqueous media using various types of oxidants. The thermal properties of the resulting polymers were investigated. Polycardanol synthesized using a specific type of oxidant exhibited good thermal stability and low heat release capacity. Preliminary results obtained from this study are quite promising and indicate the possibility of synthesizing new types of FR materials from bio-based phenols.  相似文献   
262.
顾金龙  翟成 《火灾科学》2011,20(1):16-20
针对复杂燃气管网燃气爆炸致灾严重,传播规律复杂的问题,利用实验室加工成的连续拐弯管道,模拟研究了复杂燃气管网爆炸性气体通过连续拐弯管道时的火焰传播速度、爆炸波超压变化情况。研究结果表明,当整个管道内充满瓦斯气体时,通过连续拐弯后,火焰传播速度和爆炸波超压值产生显著变化,在连续拐弯管道拐弯处为一扰动源,诱导附加湍流,气流湍流度增大,管道拐弯增加了燃烧区的湍流度,火焰燃烧产生加速度,加速燃烧产生更大能量以推动加速传播。研究结果对指导现场如何防治复杂燃气管网气体爆炸,减轻爆炸的威力具有重要作用。  相似文献   
263.
This paper presents results of an experimental investigation on fast flame propagation and the deflagration-to-detonation transition (DDT) and following detonation propagation in a semi-confined flat layer filled with stratified hydrogen–air mixtures. The experiments were performed in a transparent, rectangular channel open from below. The combustion channel has a width of 0.3 m and a length of 2.5 m. The effective layer thickness in the channel was varied by using different linear hydrogen concentration gradients. The method to create quasi-linear hydrogen concentration gradients that differ in the range and slope is also presented. The ignited mixtures were accelerated quickly to sonic flame speed in the first obstructed part of the channel. The interaction of the fast flame propagation with different obstacle set-ups was studied in the second part of the channel. The experimental results show an initiation of DDT by one additional metal grid in the obstructed semi-confined flat layer. Detonation propagation and failed detonation propagation were observed in obstructed and unobstructed parts of the channel.  相似文献   
264.
A vented chamber, with internal dimensions of 150 mm × 150 mm × 500 mm, is constructed in which the premixed methane–air deflagration flame, propagating away from the ignition source, interacts with obstacles along its path. Three obstacle configurations with different cross-wise positions are investigated. The cross-wise obstacle positions are found to have significant effects on deflagration characteristics, such as flame structure, flame front location, flame speed, and overpressure transients. The rate of flame acceleration, as the flame passes over the last obstacle, is the highest at the configuration with three centrally located obstacles, whereas the lowest is observed at the configuration with three obstacles mounted on one side of the chamber. Compared with the side configuration, the magnitude of overpressure generated increases by approximately 80% and 165% for the central and staggered configurations, respectively. Furthermore, flame propagation speeds and generated overpressures for both the central and staggered configurations are greater, which should to be avoided to reduce the risk associated with turbulent premixed deflagrations in practical processes.  相似文献   
265.
Ethylene (C2H4) is a hydrocarbon fuel and widely used in chemical industry, however, ethylene is highly flammable and therefore presents a serious fire and explosion hazard. This work is initiated by addressing the hazard assessment of ethylene mixtures in different scale channels (d = 5 mm, 10 mm and 20 mm) from the aspect of flame acceleration (FA) and deflagration-to-detonation transition (DDT) by using large eddy simulation (LES) method coupled with the artificially thickened flame (ATF) approach. The fifth order local characteristics based weighted essentially non-oscillatory (WENO) conservative finite difference scheme is employed to solve the governing equations. The numerical results confirm that flame velocity increase rapidly at the beginning stage in three channels, and the flame acceleration rate is slower in the subsequent stage, afterwards, the flame velocity has an abrupt increase, and the onset of detonation occurs. Due to the fact that wall effect is significant in the narrow channel (e.g.,5 mm), especially in the ignition stage of the flame, flames have different shapes in wider channels (10 mm and 20 mm) and narrow channel (5 mm). Both the pressure and temperature profiles confirm DDT run-up distances are 0.251 m, 0.203 m and 0.161 m in 20 mm, 10 mm and 5 mm channels, respectively, which indicates that a shorter run-up distance is required in narrower channel. The cellular detonation structures for the ethylene-air mixture in different channels indicate that multi-headed detonation structures can be found in 20 mm channel, as the channel width decreases to 10 mm, detonation has a single-headed spinning structure, as the width is further reduced to 5 mm, only large longitudinal oscillation of the pressure can be observed.  相似文献   
266.
Bend structures are common in process industries. These bends containing three typical angles (90°, obtuse angle and acute angle) are often incorporated into pipes or ducts at different positions. In our experiments, the effect of both the bend angle and bend position on flame acceleration was studied. Flame acceleration in a pipe bend can be divided into three stages. The flame speeds increased before the bend and increased again after decreasing for a short distance in the bend. Flame reversing decreased the flame speeds in the bend and led to additional turbulence, which enhanced flame acceleration after the bend. The flame acceleration in three different pipe bend angles had similar trends. The decreasing amplitude of the flame speed in the bend increased with a decrease in the bend angles. The flame speeds in the bend were ordered such that 52° <90° <145°. However, the maximum flame speeds in the pipe were in the opposite order. Additionally, both the flame speeds in the bends and the maximum flame speeds in the whole pipes increased as the bend’s position away from ignition point increased.  相似文献   
267.
间接火焰原子吸收光谱法测定水和废水中铝   总被引:2,自引:0,他引:2  
Al3+在一定酸度及1-(2-吡啶偶氮)-2-萘酚(PAN)存在的条件下,与Cu(Ⅱ)-EDTA发生定量交换反应,生成物Cu(Ⅱ)-PAN可被氯仿萃取,通过测定水相残余铜,从而间接测定铝。本文利用这一原理,进行了火焰原子吸收光谱法测定水和废水中铝的试验。结果表明,铝浓度在0.1~1.0 mg/L范围内有良好的线性关系,方法检测范围为0.05mg/L~100mg/L。本法用于不同加标水样中铝的测定,相对标准偏差为3.2%~7.2%,加标回收率为94%~106%。方法灵敏度高,精密度和准确度好,检测范围宽,检出限低,完全满足现行卫生标准对水体中铝检验的要求,且实验仪器普通易得,便于推广应用。  相似文献   
268.
To avoid the influence of external parameters, such as the vessel volume or the initial turbulence, the explosion severity should be determined from intrinsic properties of the fuel-air mixture. Therefore, the flame propagation of gaseous mixtures is often studied in order to estimate their laminar burning velocity, which is both independent of external factors and a useful input for CFD simulation. Experimentally, this parameter is difficult to evaluate when it comes to dust explosion, due to the inherent turbulence during the dispersion of the cloud. However, the low inertia of nanoparticles allows performing tests at very low turbulence without sedimentation. Knowledge on flame propagation concerning nanoparticles may then be modelled and, under certain conditions, extrapolated to microparticles, for which an experimental measurement is a delicate task. This work focuses on a nanocellulose with primary fiber dimensions of 3 nm width and 70 nm length. A one-dimensional model was developed to estimate the flame velocity of a nanocellulose explosion, based on an existing model already validated for hybrid mixtures of gas and carbonaceous nanopowders similar to soot. Assuming the fast devolatilization of organic nanopowders, the chemical reactions considered are limited to the combustion of the pyrolysis gases. The finite volume method was used to solve the mass and energy balances equations and mass reactions rates constituting the numerical system. Finally, the radiative heat transfer was also considered, highlighting the influence of the total surface area of the particles on the thermal radiation. Flame velocities of nanocellulose from 17.5 to 20.8 cm/s were obtained numerically depending on the radiative heat transfer, which proves a good agreement with the values around 21 cm/s measured experimentally by flame visualization and allows the validation of the model for nanoparticles.  相似文献   
269.
In order to better assess the hazards of explosion accidents, propane-air mixture deflagrations were conducted in a large-scale straight rectangular chamber (with a cross-section of 1.5 m × 1.5 m, length of 10 m, and total volume of 22.5 m3). The effect of initial volume, ignition position, and initial restraints on the explosion characteristics of the propane-air mixtures was investigated. The explosion overpressure, flame propagation, and flame speed were obtained and the computational fluid dynamics (CFD) software was used to simulate the flame-propagation process and field flow for auxiliary analysis. The hazards of large-scale propagation explosion under weak and strong constraints were evaluated and the different phases of flame propagation under weak and strong constraints were discriminated. Results indicate that the hazards caused by propane deflagration under weak constraint are mainly caused by flame spread. And the maximum overpressure under strong constraint appeared at the front part of the chamber under the large-scale condition, which is consistent with the previous small-scale test. Moreover, the simulations of flame structures under weak and strong constraint are in good agreement with experimental results, which furthers the understanding of large-scale propane deflagration under different initial conditions in large-scale spaces and provides basic data for three-dimensional CFD model improvement.  相似文献   
270.
火焰原子吸收光度法测定废水中总铬   总被引:3,自引:3,他引:3  
阐述了硝酸-高氯权消解、火焰原子吸收法直接测定工业废水中总铬。方法特征度0.054mg/L(1%吸收),检测限0.036mg/L,加标回收率96%~102%,相对标准左1%~17%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号