首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   17篇
安全科学   1篇
废物处理   2篇
环保管理   98篇
综合类   9篇
基础理论   6篇
污染及防治   1篇
评价与监测   3篇
社会与环境   2篇
灾害及防治   4篇
  2023年   3篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   8篇
  2014年   4篇
  2013年   6篇
  2012年   6篇
  2011年   5篇
  2010年   4篇
  2009年   5篇
  2008年   6篇
  2007年   6篇
  2006年   6篇
  2005年   6篇
  2004年   4篇
  2003年   6篇
  2002年   11篇
  2001年   6篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1995年   3篇
  1994年   4篇
  1990年   1篇
  1985年   2篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有126条查询结果,搜索用时 15 毫秒
31.
环境地貌学从人类活动与环境地貌相互作用的角度,运用系统论,综合分析法,研究现存地貌特征及后效,做出环境地貌的经济评价,探讨环境地貌的社会经济文化效应。  相似文献   
32.
Agriculture in Mediterranean countries is mainly based upon the irrigation of productive areas in the lowlands. For this reason, it is necessary to store large volumes of water in reservoirs located in mountain headwaters. These reservoirs have a relatively simple regimen of storage, increasing the water stored during the wet season (from October until May) and reaching the maximum volume shortly before the beginning of the hot, very dry season, when the water is released. This paper considers the storage regimen (inflow and outflow) of the Yesa Reservoir in the Spanish Pyrenees as an example of management of a large reservoir in a mountain Mediterranean environment, subject to a strong interannual variability. On average, the highest water storage level is achieved by retaining the high flows of the Aragón River in autumn and spring. Nevertheless, the irregularity of rainfalls and the existence of changes in the hydrological regimen lead to changes in the patterns of reservoir filling. Two patterns were identified in the Yesa Reservoir: (1) a quick increase of the stored volume in autumn, a stabilization in winter, and a new increase in spring; and (2) a continuous increase from October until May. These patterns are distributed in time over different periods since the construction of the reservoir in 1959, demonstrating the adjustment of the reservoir management to changes in the hydrological regimen.  相似文献   
33.
ABSTRACT: An accounting procedure is developed which determines a flow regime that is capable of transporting an amount of bedload sediment necessary to ensure channel stability downstream. The method allows for sediment buildup in the channel within geomorphic threshold limits during low flow periods. During periods of high runoff, enough water is bypassed to transport the stored sediment. The procedure utilizes only those flows of sufficient magnitude to maintain channel stability over the long run (25–50+ years). An example is presented which determines the volume of water and frequency of release for channel maintenance purposes downstream from a hypothetical water diversion project. Of some 1,200,000 acre feet generated during a 59-year period, 86,500 acre feet was required for channel maintenance flows. Bypass flows were not required each year, but only during those years when average daily flow reached bankfull or greater. Such releases were made on 202 of the 411 days when average flows either equalled or exceeded bankfull discharge.  相似文献   
34.
ABSTRACT: A flood-control dam was completed during 1979 on Bear Creek, a small tributary stream to the South Platte River in the Denver, Colorado, area. Before and after dam closure, repetitive surveys between 1977 and 1992 at five cross sections downstream of the dam documented changes in channel morphology. During this 15-year period, channel width increased slightly, but channel depth increased by more than 40 percent. Within the study reach, stream gradient decreased and median bed material sizes coarsened from sand in the pools and fine gravel on the rime to a median coarse gravel throughout the reach. The most striking visual change was from a sparse growth of streamside grasses to a dense growth of riparian woody vegetation.  相似文献   
35.
ABSTRACT: Geomorphic processes may partly determine channel geometry. Soil particle uplift during freezing and thawing cycles and bank sloughing during wetting and drying periods were observed. Soil properties and channel dimension were measured to determine the dominant processes controlling channel geometry in eight small (mean area 0.096 km2) drainages in Logan Canyon, Utah. Soil cohesion was low (plasticity index > 15) for all but one of the drainages sampled. Basin scale geomorphic variables were examined to determine if they control channel dimension. Bankfull width was highly correlated to channel length and valley length with r2 values of 0.85 and 0.84, respectively. A strong canonical correlation (0.64) showed that distance from the watershed divide, bank liquid limit, and bank sand content were effective predictor variables of bankfull width and depth. The interrelations between geomorphic and pedogenic processes were the strongest determinants of ephemeral channel dimension in this study.  相似文献   
36.
A study of the piedmont of the Newberry Mountains near Laughlin, Nevada, demonstrates that geologic information can improve the scientific basis of flood‐hazard management on alluvial fans in desert areas. Comparison of geologic information against flood insurance rate maps (FIRMs) reveals flaws in conventional methods for flood hazard delineation in this setting. Geologic evidence indicates that large parts of the Newberry piedmont have been isolated from significant flooding for at least the past 10,000 years. This contrasts with existing FIRMs that include large tracts of nonflood prone land in the 100‐year and 500‐year flood hazard zones and exclude areas of indisputably flood prone land from the regulatory flood plain. From the basis of the geology, flood hazards on at least one‐third of the piedmont are mischaracterized on the regulatory maps. The formal incorporation of geologic data into flood hazard studies on desert piedmonts could significantly reduce this type of discrepancy and substantially reduce the scope, hence cost, of more elaborate engineering studies and hazard mitigation strategies. The results of this study affirm the value of new Federal Emergency Management Agency (FEMA) recommendations for characterizing alluvial fan flood hazards and support an argument for mandating geological studies in the regulatory process.  相似文献   
37.
The complexity of fluvial systems necessitates interdisciplinary research in fluvial geomorphology and aquatic ecology to develop a fundamental understanding of interconnections among biotic and abiotic aspects of these systems. Integrated knowledge of this type is vital for environmental management of streams in human-dominated environments. A conceptual framework is presented for integrating geomorphological and ecological research on streams in East Central Illinois, USA, a glaciated low-relief agricultural landscape. The framework embodies a multiscale perspective in which a geomorphological conception of the fluvial system is used to define a hierarchy of characteristic spatial scales for exploring important linkages between stream geomorphology and aquatic ecology. The focus ecologically is on fish, because a rich body of historical information exists on fisheries in East Central Illinois and because past work has suggested that availability of physical habitat is a major factor influencing the community characteristics of fish in this human-altered environment. The hierarchy embodied in the framework includes the network, link, planform, bar unit, bar element, and bedform/grain scales. Background knowledge from past research is drawn upon to identify potential linkages between geomorphological and ecological conditions at each of these scales. The conceptual framework is useful for guiding integrated ecogeomorphological research at specific scales and across different scales. It also is helpful for illustrating how widespread human modification of streams has catastrophically altered the scalar structure of fluvial systems in East Central Illinois. Knowledge emerging from the integrated research provides a basis for environmental-management schemes directed toward stream naturalization.  相似文献   
38.
Abstract: The effects of streamflows on temporal variation in stream habitat were analyzed from the data collected 6‐11 years apart at 38 sites across the United States. Multiple linear regression was used to assess the variation in habitat caused by streamflow at the time of sampling and high flows between sampling. In addition to flow variables, the model also contained geomorphic and land use factors. The regression model was statistically significant (p < 0.05; R2 = 0.31‐0.46) for 5 of 14 habitat variables: mean wetted stream depth, mean bankfull depth, mean wetted stream width, coefficient of variation of wetted stream width, and the percent frequency of bank erosion. High flows between samples accounted for about 16% of the total variation in the frequency of bank erosion. Streamflow at the time of sampling was the main source of variation in mean stream depth and contributed to the variation in mean stream width and the frequency of bank erosion. Urban land use (population change) accounted for over 20% of the total variation in mean bankfull depth, 15% of the total variation in the coefficient of variation of stream width, and about 10% of the variation in mean stream width.  相似文献   
39.
Analysis of the character and condition of each river style in Bega catchment, and their downstream patterns, are used to provide a biophysical basis to prioritorize river management strategies. These reach-scale strategies are prioritorized within an integrative catchment framework. Conserving near-intact sections of the catchment is the first priority. Second, those parts of the catchment that have natural recovery potential are targeted. Finally, rehabilitation priorities are considered for highly degraded reaches. At these sites, erosion and sedimentation problems may reflect irreversible changes to river structure.  相似文献   
40.
A 0.9 km-reach of Uvas Creek, California, was reconstructed as a sinuous, meandering channel in November 1995. In February 1996, this new channel washed out. We reviewed project documents to determine the basis for the project design and conducted our own historical geomorphological study to understand the processes operating in the catchment and project reach. The project was designed using a popular stream classification system, based on which the designers assumed that a "C4" channel (a meandering gravel-bed channel) would be stable at the site. Our historical geomorphological analysis showed that the reach had been braided historically, typical of streams draining the Franciscan Formation in the California Coast Ranges, with episodic flows and high sand and gravel transport. After the project washed out, Uvas Creek reestablished an irregular, braided sand-and-gravel channel, although the channel here was narrower than it had been historically, probably due to such factors as incision caused by gravel mining. Our study casts doubt on several assumptions common in many stream restoration projects: that channel stability is always an appropriate goal; that channel forms are determined by flows with return periods of about 1.5 years; that a channel classification system is an easy, appropriate basis for channel design; and that a new channel form can be imposed without addressing the processes that determine channel form.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号