全文获取类型
收费全文 | 524篇 |
免费 | 23篇 |
国内免费 | 18篇 |
专业分类
安全科学 | 9篇 |
废物处理 | 2篇 |
环保管理 | 127篇 |
综合类 | 105篇 |
基础理论 | 48篇 |
污染及防治 | 165篇 |
评价与监测 | 82篇 |
社会与环境 | 19篇 |
灾害及防治 | 8篇 |
出版年
2025年 | 4篇 |
2024年 | 13篇 |
2023年 | 10篇 |
2022年 | 12篇 |
2021年 | 9篇 |
2020年 | 20篇 |
2019年 | 12篇 |
2018年 | 7篇 |
2017年 | 10篇 |
2016年 | 14篇 |
2015年 | 20篇 |
2014年 | 12篇 |
2013年 | 26篇 |
2012年 | 10篇 |
2011年 | 36篇 |
2010年 | 18篇 |
2009年 | 45篇 |
2008年 | 56篇 |
2007年 | 38篇 |
2006年 | 21篇 |
2005年 | 14篇 |
2004年 | 16篇 |
2003年 | 19篇 |
2002年 | 13篇 |
2001年 | 18篇 |
2000年 | 18篇 |
1999年 | 7篇 |
1998年 | 13篇 |
1997年 | 11篇 |
1996年 | 7篇 |
1995年 | 3篇 |
1994年 | 6篇 |
1993年 | 4篇 |
1992年 | 3篇 |
1991年 | 2篇 |
1990年 | 1篇 |
1989年 | 3篇 |
1988年 | 4篇 |
1987年 | 1篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1978年 | 1篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1971年 | 4篇 |
排序方式: 共有565条查询结果,搜索用时 0 毫秒
61.
62.
In this paper, we present semi-analytical solutions for two-dimensional equations governing transport of Light Non-Aqueous Phase Liquids (LNAPL) in unconfined aquifers. The proposed model is based on sharp interface displacement and steady groundwater flow assumptions, where both the water–LNAPL interface and the LNAPL–air interface are represented as sharp interfaces. In the case of steady groundwater flow, these equations can be reduced to a two-dimensional nonlinear solute transport equation, with the LNAPL thickness in the free product lens being the primary unknown variable. The linearized form of this solute transport equation falls into the category of two-dimensional transport equation with time-dependent dispersion coefficients. This equation can be solved analytically for an infinite domain region. In this paper, the general form of the analytical solution for the transport equation, as well as the solutions for some specific cases are presented. To demonstrate the utility of the proposed solution, numerical results obtained for two example problems are discussed and presented comparatively with a finite-element solution and other more restrictive solutions available in the literature. Although the solutions discussed in this paper have some simplifying assumptions, such as sharp-interfaces between fluid phases, steady groundwater flow and homogeneous aquifer properties, the semi-analytical solutions presented in this study may be used effectively as bench mark solutions in evaluating LNAPL migration in the subsurface. These solutions are simple and cost effective to implement and may be used in the calibration of other more complex numerical solutions that can be found in the literature. 相似文献
63.
A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions 总被引:3,自引:0,他引:3
An investigation of a tetrachloroethene (PCE) groundwater plume originating at a dry cleaning facility on a sand aquifer and discharging to a river showed that the near-river zone strongly modified the distribution, concentration, and composition of the plume prior to discharging into the surface water. The plume, streambed concentration, and hydrogeology were extensively characterized using the Waterloo profiler, mini-profiler, conventional and driveable multilevel samplers (MLS), Ground Penetrating Radar (GPR) surveys, streambed temperature mapping (to identify discharge zones), drivepoint piezometers, and soil coring and testing. The plume observed in the shallow streambed deposits was significantly different from what would have been predicted based on the characteristics of the upgradient plume. Spatial and temporal variations in the plume entering the near-river zone contributed to the complex contaminant distribution observed in the streambed where concentrations varied by factors of 100 to 5000 over lateral distances of less than 1 to 3.5 m. Low hydraulic conductivity semi-confining deposits and geological heterogeneities at depth below the streambed controlled the pattern of groundwater discharge through the streambed and influenced where the plume discharged into the river (even causing the plume to spread out over the full width of the streambed at some locations). The most important effect of the near-river zone on the plume was the extensive anaerobic biodegradation that occurred in the top 2.5 m of the streambed, even though essentially no biodegradation of the PCE plume was observed in the upgradient aquifer. Approximately 54% of the area of the plume in the streambed consisted solely of PCE transformation products, primarily cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC). High concentrations in the interstitial water of the streambed did not correspond to high groundwater-discharge zones, but instead occurred in low discharge zones and are likely sorbed or retarded remnants of past high-concentration plume discharges. The high-concentration areas (up to 5529 microg/l of total volatile organics) in the streambed are of ecological concern and represent potential adverse exposure locations for benthic and hyporheic zone aquatic life, but the effect of these exposures on the overall health of the river has yet to be determined. Even if the upgradient source of PCE is remediated and additional PCE is prevented from reaching the streambed, the high-concentration deposits in the streambed will likely take decades to hundreds of years to flush completely clean under natural conditions because these areas have low vertical groundwater flow velocities and high retardation factors. Despite high concentrations of contaminants in the streambed, PCE was detected in the surface water only rarely due to rapid dilution in the river and no cDCE or VC was detected. Neither the sampling of surface water nor the sampling of the groundwater from the aquifer immediately adjacent to the river gave an accurate indication of the high concentrations of PCE biodegradation products present in the streambed. Sampling of the interstitial water of the shallow streambed deposits is necessary to accurately characterize the nature of plumes discharging to rivers. 相似文献
64.
We consider the results of a recent paper in this journal [Zeru, A. and Schäfer, G., 2005. Analysis of groundwater contamination using concentration–time series recorded during an integral pumping test: Bias introduced by strong concentration gradients within the plume. Journal of Contaminant Hydrology 81 (2005) 106–124], which addresses the field-scale characterisation of contaminant plumes in groundwater. There, it is concluded that contaminant concentration gradients can bias Integral Pumping Test (IPT) interpretations considerably, in particular if IPTs are conducted in advective fronts of contaminant plumes. We discuss implications of this setting and also argue that the longitudinal and transverse dispersivities used in the examples of Zeru and Schäfer (2005) of up to 30 m and 3 m, respectively, are generally very high for the here relevant capture zone scale (< 20 m). However, regardless of both longitudinal and transverse concentration gradients, we further show through a counter-example that IPT results are unbiased as long as the concentration attenuation along the flow direction is linear over the capture zone extent. 相似文献
65.
Numerical simulations of colloid transport in discretely fractured porous media were performed to investigate the importance of matrix diffusion of colloids as well as the filtration and remobilization of colloidal particles in both the fractures and porous matrix. To achieve this objective a finite element numerical code entitled COLDIFF was developed. The processes that COLDIFF takes into account include advective-dispersive transport of colloids, filtration and remobilization of colloidal particles in both fractures and porous matrix, and diffusive interactions of colloids between the fractures and porous matrix. Three sets of simulations were conducted to examine the importance of parameters and processes controlling colloid migration. First, a sensitivity analysis was performed using a porous block containing a single fracture to determine the relative importance of various phenomenological coefficients on colloid transport. The primary result of the analysis showed that the porosity of the matrix and the process of colloid filtration in fractures play important roles in controlling colloid migration. Second, simulations were performed to replicate and examine the results of a laboratory column study using a fractured shale saprolite. Results of this analysis showed that the filtration of colloidal particles in the porous matrix can greatly affect the tailing of colloid concentrations after the colloid source was removed. Finally, field-scale simulations were performed to examine the effect of matrix porosity, fracture filtration and fracture remobilization on long-term colloid concentration and migration distance. The field scale simulations indicated that matrix diffusion and fracture filtration can significantly reduce colloid migration distance. Results of all three analyses indicated that in environments where porosity is relatively high and colloidal particles are small enough to diffuse out of fractures, the characteristics of the porous matrix that affect colloid transport become more important than those of the fracture network. Because the properties of the fracture network tend to have greater uncertainty due to difficulties in their measurement relative to those of the porous matrix, prediction uncertainties associated with colloid transport in discretely fractured porous media may be reduced. 相似文献
66.
Michelle M. Lorah Isabelle M. Cozzarelli J.K. Bhlke 《Journal of contaminant hydrology》2009,105(3-4):99-117
The biogeochemistry at the interface between sediments in a seasonally ponded wetland (slough) and an alluvial aquifer contaminated with landfill leachate was investigated to evaluate factors that can effect natural attenuation of landfill leachate contaminants in areas of groundwater/surface-water interaction. The biogeochemistry at the wetland-alluvial aquifer interface differed greatly between dry and wet conditions. During dry conditions (low water table), vertically upward discharge was focused at the center of the slough from the fringe of a landfill-derived ammonium plume in the underlying aquifer, resulting in transport of relatively low concentrations of ammonium to the slough sediments with dilution and dispersion as the primary attenuation mechanism. In contrast, during wet conditions (high water table), leachate-contaminated groundwater discharged upward near the upgradient slough bank, where ammonium concentrations in the aquifer where high. Relatively high concentrations of ammonium and other leachate constituents also were transported laterally through the slough porewater to the downgradient bank in wet conditions. Concentrations of the leachate-associated constituents chloride, ammonium, non-volatile dissolved organic carbon, alkalinity, and ferrous iron more than doubled in the slough porewater on the upgradient bank during wet conditions. Chloride, non-volatile dissolved organic carbon (DOC), and bicarbonate acted conservatively during lateral transport in the aquifer and slough porewater, whereas ammonium and potassium were strongly attenuated. Nitrogen isotope variations in ammonium and the distribution of ammonium compared to other cations indicated that sorption was the primary attenuation mechanism for ammonium during lateral transport in the aquifer and the slough porewater. Ammonium attenuation was less efficient, however, in the slough porewater than in the aquifer and possibly occurred by a different sorption mechanism. A stoichiometrically balanced increase in magnesium concentration with decreasing ammonium and potassium concentrations indicated that cation exchange was the sorption mechanism in the slough porewater. Only a partial mass balance could be determined for cations exchanged for ammonium and potassium in the aquifer, indicating that some irreversible sorption may be occurring.Although wetlands commonly are expected to decrease fluxes of contaminants in riparian environments, enhanced attenuation of the leachate contaminants in the slough sediment porewater compared to the aquifer was not observed in this study. The lack of enhanced attenuation can be attributed to the fact that the anoxic plume, comprised largely of recalcitrant DOC and reduced inorganic constituents, interacted with anoxic slough sediments and porewaters, rather than encountering a change in redox conditions that could cause transformation reactions. Nevertheless, the attenuation processes in the narrow zone of groundwater/surface-water interaction were effective in reducing ammonium concentrations by a factor of about 3 during lateral transport across the slough and by a factor of 2 to 10 before release to the surface water. Slough porewater geochemistry also indicated that the slough could be a source of sulfate in dry conditions, potentially providing a terminal electron acceptor for natural attenuation of organic compounds in the leachate plume. 相似文献
67.
Equilibrium nonaqueous phase liquid pool geometry in coarse soils with discrete textural interfaces 总被引:1,自引:0,他引:1
This paper presents a model for the geometry of nonaqueous phase liquid (NAPL) pools and mounds in homogeneous soils and soils with discrete textural interfaces. It is shown that the concepts of capillary pressure-saturation curve hysteresis and entry pressures are integral to the complete conceptualization of pool and mound geometry. Unless hysteresis is included in the analysis, light NAPL (LNAPL) in homogeneous soils cannot exist in pools at all, and dense NAPL (DNAPL) will not mound on horizontal textural interfaces unless lateral confining boundaries are present. The proposed model also implies that remobilization of DNAPL pools will occur at lower hydraulic gradients than those predicted with previous models. Comparing predicted and experimental DNAPL and LNAPL pool thicknesses and the location of an LNAPL lens with respect to the top of the capillary fringe validate the model. 相似文献
68.
Newman M Hatfield K Hayworth J Rao PS Stauffer T 《Journal of contaminant hydrology》2005,81(1-4):34-62
The methods presented in this work provide a potential tool for characterizing contaminant source zones in terms of mass flux. The problem was conceptualized by considering contaminant transport through a vertical "flux plane" located between a source zone and a downgradient region where contaminant concentrations were measured. The goal was to develop a robust method capable of providing a statement of the magnitude and uncertainty associated with estimated contaminant mass flux values. In order to estimate the magnitude and transverse spatial distribution of mass flux through a plane, the problem was considered in an optimization framework. Two numerical optimization techniques were applied, simulated annealing (SA) and minimum relative entropy (MRE). The capabilities of the flux plane model and the numerical solution techniques were evaluated using data from a numerically generated test problem and a nonreactive tracer experiment performed in a three-dimensional aquifer model. Results demonstrate that SA is more robust and converges more quickly than MRE. However, SA is not capable of providing an estimate of the uncertainty associated with the simulated flux values. In contrast, MRE is not as robust as SA, but once in the neighborhood of the optimal solution, it is quite effective as a tool for inferring mass flux probability density functions, expected flux values, and confidence limits. A hybrid (SA-MRE) solution technique was developed in order to take advantage of the robust solution capabilities of SA and the uncertainty estimation capabilities of MRE. The coupled technique provided probability density functions and confidence intervals that would not have been available from an independent SA algorithm and they were obtained more efficiently than if provided by an independent MRE algorithm. 相似文献
69.
A novel electrolytic groundwater remediation process, which used the H2 continuously generated at cathode to achieve in situ catalytic hydrodechlorination, was developed for the treatment of 2,4-dichlorophenol (2,4-DCP) in groundwater. Catalytic hydrodechlorination using Pd supported on bamboo charcoal and external H2 showed that 2,4-DCP was completely dechlorinated to phenol within 30 min at pH ? 5.5. In a divided electrolytic system, the catalytic hydrodechlorination of 2,4-DCP in cathodic compartment by H2 generated at the cathode under 20 and 50 mA reached 100% at 120 and 60 min, respectively. Two column experiments with influent pHs of 5.5 (unconditioned) and 2 were conducted to evaluate the feasibility of this process. The 2,4-DCP removal efficiencies were about 63% and nearly 100% at influent pHs of 5.5 and 2, respectively. Phenol was solely produced by 2,4-DCP hydrodechlorination, and was subsequently degraded at the anode. A low pH could enhance the hydrodechlorination, but was not necessarily required. This study provides the preliminary results of a novel effective electrolytic process for the remediation of groundwater contaminated by chlorinated aromatics. 相似文献
70.
The results of this paper are an initiation to capture the drinking water and/or groundwater elemental situation in the youngest European country, Kosovo. We aim to present a clear picture of the natural uranium concentration in drinking water and/or groundwater as it is distributed to the population of Kosovo. Nine hundred and fifty-one (951) drinking water samples were analyzed by inductively coupled plasma mass spectrometry (ICPMS). The results are the first countrywide interpretation of the uranium concentration in drinking water and/or groundwater, directly following the Kosovo war of 1999. More than 98% of the samples had uranium concentrations above 0.01 μg L−1, which was also our limit of quantification. Concentrations up to 166 μg L−1 were found with a mean of 5 μg L−1 and median 1.6 μg L−1 were found. Two point six percent (2.6%) of the analyzed samples exceeded the World Health Organization maximum acceptable concentration of 30 μg L−1, and 44.2% of the samples exceeded the 2 μg L−1 German maximum acceptable concentrations recommended for infant food preparations. 相似文献