首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   0篇
  国内免费   2篇
环保管理   106篇
综合类   19篇
基础理论   88篇
污染及防治   18篇
评价与监测   4篇
社会与环境   1篇
  2022年   1篇
  2021年   3篇
  2018年   1篇
  2017年   2篇
  2015年   1篇
  2014年   4篇
  2013年   4篇
  2012年   5篇
  2011年   25篇
  2010年   18篇
  2009年   22篇
  2008年   26篇
  2007年   15篇
  2006年   15篇
  2005年   13篇
  2004年   3篇
  2003年   7篇
  2002年   7篇
  2001年   6篇
  2000年   8篇
  1999年   4篇
  1998年   3篇
  1997年   4篇
  1996年   9篇
  1995年   5篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   5篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1974年   1篇
排序方式: 共有236条查询结果,搜索用时 15 毫秒
81.
The aim of this study is to empirically illustrate the importance of taking movement constraints into account when testing for habitat selection with telemetry data. Global Positioning System relocations of two Scandinavian brown bears were used to compare the results of two different tests of habitat selection by the bears within their home range. Both relied on the comparison of observed dataset with datasets simulated under the hypothesis of random habitat use. The first analysis did not take movement constraints into account (simulations were carried out by randomly distributing a set of points in the home range) whereas the second analysis accounted for these constraints (simulations were carried out by building random trajectories in the home range). The results for the two analyses showed contrasted results. Therefore, not accounting for movement constraints in analyses may result in a misleading biological interpretation. Autocorrelation between relocations is not undesirable: it contains information about ecological processes that should be integrated in habitat selection analyses.  相似文献   
82.
Interactions between dissolved organic matter (DOM) and bacteria are central in the biogeochemical cycles of aquatic ecosystems; however, the relative importance of biodegradable dissolved organic carbon (BDOC) compared with other environmental variables in structuring the bacterial communities needs further investigation. Here, we investigated bacterial communities, chromophoric DOM (CDOM) characteristics and physico-chemical parameters as well as examined BDOC via bioassay incubations in large eutrophic Lake Taihu, China, to explore the importance of BDOC for shaping bacterial community structures and co-occurrence patterns. We found that the proportion of BDOC (%BDOC) correlated significantly and positively with the DOC concentration and the index of the contribution of recent produced autochthonous CDOM (BIX). %BDOC, further correlated positively with the relative abundance of the tryptophan-like component and negatively with CDOM aromaticity, indicating that autochthonous production of protein-like CDOM was an important source of BDOC. The richness of the bacterial communities correlated negatively with %BDOC, indicating an enhanced number of species in the refractory DOC environments. %BDOC was identified as a significant stronger factor than DOC in shaping bacterial community composition and the co-occurrence network, suggesting that substrate biodegradability is more significant than DOC quantity determining the bacterial communities in a eutrophic lake. Environmental factors explained a larger proportion of the variation in the conditionally rare and abundant subcommunity than for the abundant and the rare bacterial subcommunities. Our findings emphasize the importance of considering bacteria with different abundance patterns and DOC biodegradability when studying the interactions between DOM and bacteria in eutrophic lakes.  相似文献   
83.
利用恢复生态学和景观生态学原理构建人工替代栖息地是恢复和重建生物栖息地环境的重要手段之一,是用于滨海河口区修复或重建滩涂湿地等栖息地的一种替代方法。人工替代栖息地构建出了接近自然原貌的人工系统,创造一种湿地植被和湿地动物可以协调共存的生境,不仅可以为鸟类资源和渔业资源提供良好的栖息环境,其中多样化组合的植被群落在滨水景观、水质净化等方面也起到了重要的作用,对长江口自然湿地的恢复和自然保护区的动态管理具有不可忽视的补充作用。在迁徙鸟类重要中转驿站,珍稀或者经济鱼类的洄游通道,特殊价值的重要湿地景观格局以及水资源战略储备区域中布局人工替代栖息地,可以发挥其对长江口湿地的补充作用,使高度开放而又极为敏感的长江河口地区循着生态健康道路发展。  相似文献   
84.
Identification of critical habitat in estuarine nursery areas is an important conservation and management objective. Habitat can be viewed as a mosaic of both temporally variable environmental features and spatially variable structural features that combine to define optimal habitat. Effective models of juvenile distributions should account for individual movement, as well as the full suite of habitat variability including both spatial and temporal components. We have extended a terrestrial model of small-scale movement patterns to describe habitat choices of an index juvenile fish in an estuarine nursery system. Movement of small juvenile fishes was found to be influenced by both spatial and temporal patterns in habitat quality, and it was a balanced mix of both that resulted in an optimal distribution. Fishes that perceive habitat on a scale much smaller than the scale of spatial heterogeneity may respond to temporal change as a movement cue allowing for more deterministic outcomes at larger scales despite perceptual limitations. These model outcomes suggest a hierarchical approach is best for describing habitat choice in juvenile fishes and this approach will be used in the future to explore individual and population responses to predictable habitat change.  相似文献   
85.
Adult parasitoid females lay their eggs in or on host insects. Most species are incapable of de novo lipogenesis as adults, and lipids accumulated during the larval stage are allocated either to egg production or to adult survival. Lipid consumption increases with distance covered by the parasitoids and thus with the distance between available hosts within a habitat. Temperature should affect parasitoid fitness because it changes the constraint imposed by a limited reserve of lipids and because it influences behaviour. Climate change involves both an increase in average temperature and an increased frequency of extreme weather such as heat waves. We investigated how the predicted increase of temperature will affect parasitoid fitness and how this depends on habitat parameters (spatial distribution of hosts and lipid cost of habitat exploitation). We studied optimal behaviour and calculated fitness at different temperatures and in different habitats using a stochastic dynamic programming model for pro-ovigenic parasitoids (which mature all their eggs before becoming adult). We show that an increase in temperature decreases fitness of parasitoids adapted to lower temperatures. This decrease in fitness depends on habitat quality. In field conditions (assuming small costs of intra-patch foraging), the loss of fitness should be larger in habitats with high inter-patch distance and in habitats with a more aggregated distribution of hosts. The foraging behaviour of parasitoids is also affected; at higher temperature we show that intra-patch foraging becomes less efficient, and patch residence times are longer.  相似文献   
86.
Animals face trade-offs between predation risk and foraging success depending on their location in the landscape; for example, individuals that remain near a common shelter may be safe from predation but incur stronger competition for resources. Despite a long tradition of theoretical exploration of the relationships among foraging success, conspecific competition, predation risk, and population distribution in a heterogeneous environment, the scenario we describe here has not been explored theoretically. We construct a model of habitat use rules to predict the distribution of a local population (prey sharing a common shelter and foraging across surrounding habitats). Our model describes realized habitat quality as a ratio of density- and location-dependent mortality to density-dependent growth. We explore how the prey distribution around a shelter is expected to change as the parameters governing the strength of density dependence, landscape characteristics, and local abundance vary. Within the range of parameters where prey spend some time away from shelter but remain site-attached, the prey density decreases away from shelter. As the distance at which prey react to predators increases, the population range generally increases. At intermediate reaction distances, however, increases in the reaction distance lead to decreases in the maximum foraging distance because of increased evenness in the population distribution. As total abundance increases, the population range increases, average population density increases, and realized quality decreases. The magnitude of these changes differs in, for example, ‘high-’ and ‘low-visibility’ landscapes where prey can detect predators at different distances.  相似文献   
87.
Conservation of living resources is no longer parochial in scope; it is a global challenge. Ecological, social, political, and business interests operate in a network that reaches across seas, continents, and nations. Industries, including the electric utility industry, are diversifying in products and expanding into international markets. They soon discover that, while all nations have common goals for their peoples, conservation and environmental issues in less-developed nations have different dimensions and norms than are encountered in Western, affluent societies. In developing countries, survival is more of an issue than quality of life, and burgeoning human numbers have put tremendous pressures on resources including wildlife and its habitats. Human population, urbanization of society, changes in single-species to ecosystem and landscape levels of management, and protectionists and animal rights philosophies are influences with which conservation of resources and the environment must contend. The human condition and conservation efforts are inextricably linked. Examples to demonstrate this fact are given for Project Tiger in India, the jaguar in Latin America, and the Serengeti ecosystem in Kenya and Tanzania.  相似文献   
88.
The aim of this study was to analyse the effects of differences in cropping pattern between organic and conventional arable farms on the breeding activity of skylarks and to assess the effects of arable crop management on skylark nest survival. Skylark nest density was seven times higher on organic farms than on conventional farms (0.63 vs. 0.09 nest per 10 ha). Skylarks showed a strong preference for spring cereals, lucerne and grass leys, all of which were mainly or exclusively grown on organic farms. On organic farms nests were initiated during the entire breeding season, but on conventional farms no nesting activity was found during the peak of the season (early May to early June). On organic farms 27% of all nests was successful. Increasing the availability of suitable breeding habitat during the peak of the breeding season on conventional farms might provide one means of enhancing breeding skylark populations. On organic farms, crop management should focus on reducing nest loss due to farming operations.  相似文献   
89.
Land-use change due to socioeconomic factors leads to the abandonment of traditional intensive coppice management in large areas of the mountainous landscapes of the Apennines (Italy). In this study we explored the multivariate relationship between plant species traits, stage of forest succession and environmental gradients. We focused on community-level patterns in plant traits of the vegetation of beech forest understory along the regeneration chronosequence initiated after cessation of coppicing. We hypothesized that the correlations between the traits and environmental factors should increase with succession age due to the decreasing role of chance.Landscape-level heterogeneity, i.e. changing elevation, slope, exposition, bedrock and forest stand age was assessed using a stratified random sampling design. Sixty sites were sampled for stand structure and species composition. We focused on 14 plant traits related to persistence, growth and dispersal. The recently developed data-analytical method, Model-Based Recursive Partitioning, was used to disentangle the relationships between patterns of plant traits and environmental gradients.About half (seven) of the studied plant traits showed significant correlations with succession stand age, elevation, inclination, heat index and bedrock. Contrary to the low number of trait-environment correlations in early succession, eight traits showed significant relationships with one or more abiotic factors in older stages of the post-coppice development. Stand age had the highest independent explanatory power, explaining 40% of variance of SLA, more than 17% of variance of short-distance seed dispersal and more than 15% of variance of both long-term connection and extensive perennial root. Among the other abiotic factors, elevation explained 27% of variance of SLA, inclination explained 6-8% of variance of long-term connection, extensive perennial root, thickening and large bud bank.The observed trait-environmental relationship is assumed to be driven by various environmental factors operating at various levels of complexity. While forest succession in relatively homogeneous landscapes might be driven mainly by environmental factors related to forest succession itself and associated abiotic changes (such as changes in light and soil moisture patterns), in heterogeneous landscapes the succession pathways may be structured by landscape-level environmental factors such as inclination. However, in the present study, forest stand age had the highest explanatory power for most of the investigated traits, supporting the assumption of the overall strong impact of succession-driven environmental factors in trait-environment relationships.  相似文献   
90.
While several empirical and theoretical studies have clearly shown the negative effects of climate or landscape changes on population and species survival only few of them addressed combined and correlated consequences of these key environmental drivers. This also includes positive landscape changes such as active habitat management and restoration to buffer the negative effects of deteriorating climatic conditions. In this study, we apply a conceptual spatial modelling approach based on functional types to explore the effects of both positive and negative correlations between changes in habitat and climate conditions on the survival of spatially structured populations. We test the effect of different climate and landscape change scenarios on four different functional types that represent a broad spectrum of species characterised by their landscape level carrying capacity, the local population turnover rates at the patch level (K-strategies vs. r-strategies) and dispersal characterstics. As expected, simulation results show that correlated landscape and climatic changes can accelerate (in case of habitat loss or degradation) or slow down (in case of habitat gain or improvement) regional species extinction. However, the strength of the combined changes depends on local turnover at the patch level, the overall landscape capacity of the species, and its specific dispersal characteristics. Under all scenarios of correlated changes in habitat and climate conditions we found the highest sensitivity for functional types representing species with a low landscape capacity but a high population growth rate and a strong density regulation causing a high turnover at the local patch level.The relative importance of habitat loss or habitat degradation, in combination with climate deterioration, differed among the functional types. However, an increase in regional capacity revealed a similar response pattern: For all types, habitat improvement led to higher survival times than habitat gain, i.e. the establishment of new habitat patches. This suggests that improving local habitat quality at a regional scale is a more promising conservation strategy under climate change than implementing new habitat patches. This conceptual modelling study provides a general framework to better understand and support the management of populations prone to complex environmental changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号