全文获取类型
收费全文 | 305篇 |
免费 | 6篇 |
国内免费 | 2篇 |
专业分类
废物处理 | 6篇 |
环保管理 | 261篇 |
综合类 | 12篇 |
基础理论 | 8篇 |
污染及防治 | 5篇 |
评价与监测 | 16篇 |
社会与环境 | 5篇 |
出版年
2025年 | 1篇 |
2024年 | 1篇 |
2023年 | 2篇 |
2022年 | 1篇 |
2021年 | 1篇 |
2020年 | 3篇 |
2019年 | 8篇 |
2018年 | 11篇 |
2017年 | 11篇 |
2016年 | 15篇 |
2015年 | 16篇 |
2014年 | 20篇 |
2013年 | 16篇 |
2012年 | 16篇 |
2011年 | 16篇 |
2010年 | 9篇 |
2009年 | 20篇 |
2008年 | 17篇 |
2007年 | 24篇 |
2006年 | 19篇 |
2005年 | 22篇 |
2004年 | 6篇 |
2003年 | 4篇 |
2002年 | 9篇 |
2001年 | 6篇 |
2000年 | 3篇 |
1999年 | 3篇 |
1998年 | 2篇 |
1997年 | 3篇 |
1996年 | 3篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1990年 | 2篇 |
1989年 | 1篇 |
1988年 | 3篇 |
1987年 | 3篇 |
1986年 | 2篇 |
1985年 | 1篇 |
1984年 | 2篇 |
1983年 | 1篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1977年 | 2篇 |
1974年 | 1篇 |
1972年 | 2篇 |
排序方式: 共有313条查询结果,搜索用时 15 毫秒
51.
Richard B. Alexander Elizabeth W. Boyer Richard A. Smith Gregory E. Schwarz Richard B. Moore 《Journal of the American Water Resources Association》2007,43(1):41-59
Abstract: Knowledge of headwater influences on the water‐quality and flow conditions of downstream waters is essential to water‐resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water‐quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass‐balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water‐quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first‐order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first‐order headwaters contribute approximately 70% of the mean‐annual water volume and 65% of the nitrogen flux in second‐order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and 40% in fourth‐ and higher‐order rivers that include navigable waters and their tributaries. These results underscore the profound influence that headwater areas have on shaping downstream water quantity and water quality. The results have relevance to water‐resource management and regulatory decisions and potentially broaden understanding of the spatial extent of Federal CWA jurisdiction in U.S. waters. 相似文献
52.
Holly R. Yaryan Hall Brian P. Bledsoe 《Journal of the American Water Resources Association》2023,59(4):681-700
Natural channel design (NCD) and analytical channel design (ACD) are two competing approaches to stable channel design that share fundamental similarities in accounting for sediment transport processes with designs based on hybrid fluvial geomorphology and hydraulic engineering methods. In this paper, we highlight the linkage between ACD's capacity/supply ratio (CSR) and NCD's sediment capacity models (FLOWSED/POWERSED), illustrating how ACD and NCD have reached a point of convergent evolution within the stream restoration toolbox. We modified an existing CSR analytical spreadsheet tool which enabled us to predict relative channel stability using both conventional bed load transport equations and regional sediment regression curves. The stable channel design solutions based on measured data most closely matched the Parker (ACD) and/or Pagosa good/fair (NCD) relationships, which also showed the greatest CSR sensitivity in response to channel alterations. We found that CSR differences among the transport relationships became more extreme the further the design width deviated from the supply reach, suggesting that a stable upstream supply reach may serve as the best design analog. With this paper, we take a step toward resolving lingering controversy in the field of stream restoration, advancing the science and practice by reconciling key differences between ACD and NCD in the context of reach scale morphodynamics. 相似文献
53.
Stephen D. Preston Richard B. Alexander Gregory E. Schwarz Charles G. Crawford 《Journal of the American Water Resources Association》2011,47(5):891-915
Preston, Stephen D., Richard B. Alexander, Gregory E. Schwarz, and Charles G. Crawford, 2011. Factors Affecting Stream Nutrient Loads: A Synthesis of Regional SPARROW Model Results for the Continental United States. Journal of the American Water Resources Association (JAWRA) 47(5):891‐915. DOI: 10.1111/j.1752‐1688.2011.00577.x Abstract: We compared the results of 12 recently calibrated regional SPARROW (SPAtially Referenced Regressions On Watershed attributes) models covering most of the continental United States to evaluate the consistency and regional differences in factors affecting stream nutrient loads. The models – 6 for total nitrogen and 6 for total phosphorus – all provide similar levels of prediction accuracy, but those for major river basins in the eastern half of the country were somewhat more accurate. The models simulate long‐term mean annual stream nutrient loads as a function of a wide range of known sources and climatic (precipitation, temperature), landscape (e.g., soils, geology), and aquatic factors affecting nutrient fate and transport. The results confirm the dominant effects of urban and agricultural sources on stream nutrient loads nationally and regionally, but reveal considerable spatial variability in the specific types of sources that control water quality. These include regional differences in the relative importance of different types of urban (municipal and industrial point vs. diffuse urban runoff) and agriculture (crop cultivation vs. animal waste) sources, as well as the effects of atmospheric deposition, mining, and background (e.g., soil phosphorus) sources on stream nutrients. Overall, we found that the SPARROW model results provide a consistent set of information for identifying the major sources and environmental factors affecting nutrient fate and transport in United States watersheds at regional and subregional scales. 相似文献
54.
Thomas H. Epps Daniel R. Hitchcock Anand D. Jayakaran Drake R. Loflin Thomas M. Williams Devendra M. Amatya 《Journal of the American Water Resources Association》2013,49(6):1284-1295
The objective of this study was to assess curve number (CN) values derived for two forested headwater catchments in the Lower Coastal Plain (LCP) of South Carolina using a three‐year period of storm event rainfall and runoff data in comparison with results obtained from CN method calculations. Derived CNs from rainfall/runoff pairs ranged from 46 to 90 for the Upper Debidue Creek (UDC) watershed and from 42 to 89 for the Watershed 80 (WS80). However, runoff generation from storm events was strongly related to water table elevation, where seasonally variable evapotranspirative wet and dry moisture conditions persist. Seasonal water table fluctuation is independent of, but can be compounded by, wet conditions that occur as a result of prior storm events, further complicating flow prediction. Runoff predictions for LCP first‐order watersheds do not compare closely to measured flow under the average moisture condition normally associated with the CN method. In this study, however, results show improvement in flow predictions using CNs adjusted for antecedent runoff conditions and based on water table position. These results indicate that adaptations of CN model parameters are required for reliable flow predictions for these LCP catchments with shallow water tables. Low gradient topography and shallow water table characteristics of LCP watersheds allow for unique hydrologic conditions that must be assessed and managed differently than higher gradient watersheds. 相似文献
55.
D.C. Goodrich W.G. Kepner L.R. Levick P.J. Wigington Jr. 《Journal of the American Water Resources Association》2018,54(2):400-422
Ephemeral and intermittent streams are abundant in the arid and semiarid landscapes of the Western and Southwestern United States (U.S.). Connectivity of ephemeral and intermittent streams to the relatively few perennial reaches through runoff is a major driver of the ecohydrology of the region. These streams supply water, sediment, nutrients, and biota to downstream reaches and rivers. In addition, they provide runoff to recharge alluvial and regional groundwater aquifers that support baseflow in perennial mainstem stream reaches over extended periods when little or no precipitation occurs. Episodic runoff, as well as groundwater inflow to surface water in streams support limited naturally occurring riparian communities. This paper provides an overview and comprehensive examination of factors affecting the hydrologic, chemical, and ecological connectivity of ephemeral and intermittent streams on perennial or intermittent rivers in the arid and semiarid Southwestern U.S. Connectivity as influenced and moderated through the physical landscape, climate, and human impacts to downstream waters or rivers is presented first at the broader Southwestern scale, and secondly drawing on a specific and more detailed example of the San Pedro Basin due to its history of extensive observations and research in the basin. A wide array of evidence clearly illustrates hydrologic, chemical, and ecological connectivity of ephemeral and intermittent streams throughout stream networks. 相似文献
56.
Sonia Binte Murshed Md. Rezaur Rahman Jagath J. Kaluarachchi 《Journal of the American Water Resources Association》2019,55(4):800-823
The Ganges Delta in Bangladesh is an example of water‐related catastrophes in a major rural river basin where limitations in quantity, quality, and timing of available water are producing disastrous conditions. Water availability limitations are modifying the hydrologic characteristics especially when water allocation is controlled from the upstream Farakka Barrage. This study presents the changes and consequences in the hydrologic regime due to climate‐ and human‐induced stresses. Flow duration curves (FDCs), rainfall elasticity, and temperature sensitivity were used to assess the pre‐ and post‐barrage water flow patterns. Hydrologic and climate indices were computed to provide insight on hydro‐climatic variability and trend. Significant increases in temperature, evapotranspiration, hot days, heating, and cooling degree days indicate the region is heading toward a warmer climate. Moreover, increase in high‐intensity rainfall of short duration is making the region prone to extreme floods. FDCs depict a large reduction in river flows between pre‐ and post‐barrage periods, resulting in lower water storage capacity. The reduction in freshwater flow increased the extent and intensity of salinity intrusion. This freshwater scarcity is reducing livelihood options considerably and indirectly forcing population migration from the delta region. Understanding the causes and directions of hydrologic changes is essential to formulate improve water resources management in the region. 相似文献
57.
Ken M. Fritz Kate A. Schofield Laurie C. Alexander Michael G. McManus Heather E. Golden Charles R. Lane William G. Kepner Stephen D. LeDuc Julie E. DeMeester Amina I. Pollard 《Journal of the American Water Resources Association》2018,54(2):323-345
Streams, riparian areas, floodplains, alluvial aquifers, and downstream waters (e.g., large rivers, lakes, and oceans) are interconnected by longitudinal, lateral, and vertical fluxes of water, other materials, and energy. Collectively, these interconnected waters are called fluvial hydrosystems. Physical and chemical connectivity within fluvial hydrosystems is created by the transport of nonliving materials (e.g., water, sediment, nutrients, and contaminants) which either do or do not chemically change (chemical and physical connections, respectively). A substantial body of evidence unequivocally demonstrates physical and chemical connectivity between streams and riparian wetlands and downstream waters. Streams and riparian wetlands are structurally connected to downstream waters through the network of continuous channels and floodplain form that make these systems physically contiguous, and the very existence of these structures provides strong geomorphologic evidence for connectivity. Functional connections between streams and riparian wetlands and their downstream waters vary geographically and over time, based on proximity, relative size, environmental setting, material disparity, and intervening units. Because of the complexity and dynamic nature of connections among fluvial hydrosystem units, a complete accounting of the physical and chemical connections and their consequences to downstream waters should aggregate over multiple years to decades. 相似文献
58.
Eric D. Stein Matthew R. Cover A. Elizabeth Fetscher Clare O'Reilly Roxana Guardado Christopher W. Solek 《Journal of the American Water Resources Association》2013,49(4):780-792
Armoring of streambanks is a common management response to perceived threats to adjacent infrastructure from flooding or erosion. Despite their pervasiveness, effects of reach‐scale bank armoring have received less attention than those of channelization or watershed‐scale hydromodification. In this study, we explored mechanistic ecosystem responses to armoring by comparing conditions upstream, within, and downstream of six stream reaches with bank armoring in Southern California. Assessments were based on four common stream‐channel assessment methods: (1) traditional geomorphic measures, (2) the California Rapid Assessment Method for wetlands, (3) bioassessment with benthic macroinvertebrates, and (4) bioassessment with stream algae. Although physical responses varied among stream types (mountain, transitional, and lowland), armored segments generally had lower slopes, more and deeper pools and fewer riffles, and increased sediment deposition. Several armored segments exhibited channel incision and bank toe failure. All classes of biological indicators showed subtle, mechanistic responses to physical changes. However, extreme heterogeneity among sites, the presence of catchment‐scale disturbances, and low sample size made it difficult to ascribe observed patterns solely to channel armoring. The data suggest that species‐level or functional group‐level metrics may be more sensitive tools than integrative indices of biotic integrity to local‐scale effects. 相似文献
59.
Kristan Cockerill William P. Anderson Jr. 《Journal of the American Water Resources Association》2014,50(2):468-482
Stream restoration has become a multibillion dollar business with mixed results as to its efficacy. This case study utilizes pre‐ and post‐monitoring data from restoration projects on an urban stream to assess how well stream conditions, publicly stated project goals, and project implementation align. Our research confirms previous studies showing little communication among academic researchers and restoration practitioners as well as provides further evidence that restoration efforts tend to focus on small‐scale, specific sites without considering broader land use patterns. This study advances our understanding of restoration by documenting that although improving ecological conditions is a stated goal for restoration projects, the implemented measures are not always focused on those issues that are the most ecologically salient. What these projects have accomplished is to protect the built environment and promote positive public perception. We argue that these disconnects among publicized goals for restoration, the implemented features, and actual stream conditions may create a false image of what an ecologically stable stream looks like and therefore perpetuate a false sense of optimism about the feasibility of restoring urban streams. 相似文献
60.
Ken M. Fritz Elisabeth Hagenbuch Ellen D'Amico Molly Reif Parker J. Wigington Jr. Scott G. Leibowitz Randy L. Comeleo Joseph L. Ebersole Tracie‐Lynn Nadeau 《Journal of the American Water Resources Association》2013,49(4):867-882
Supreme Court cases have questioned if jurisdiction under the Clean Water Act extends to water bodies such as streams without year‐round flow. Headwater streams are central to this issue because many periodically dry, and because little is known about their influence on navigable waters. An accurate account of the extent and flow permanence of headwater streams is critical to estimating downstream contributions. We compared the extent and permanence of headwater streams from two field surveys with values from databases and maps. The first used data from 29 headwater streams in nine U.S. forests, whereas the second had data from 178 headwater streams in Oregon. Synthetic networks developed from the nine‐forest survey indicated that 33 to 93% of the channel lacked year‐round flow. Seven of the nine forests were predicted to have >200% more channel length than portrayed in the high‐resolution National Hydrography Dataset (NHD). The NHD and topographic map classifications of permanence agreed with ~50% of the field determinations across ~300 headwater sites. Classification agreement with the field determinations generally increased with increasing resolution. However, the flow classification on soil maps only agreed with ~30% of the field determination despite depicting greater channel extent than other maps. Maps that include streams regardless of permanence and size will aid regulatory decisions and are fundamental to improving water quality monitoring and models. 相似文献