首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   256篇
  免费   48篇
  国内免费   6篇
废物处理   6篇
环保管理   260篇
综合类   11篇
基础理论   8篇
污染及防治   4篇
评价与监测   16篇
社会与环境   5篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   8篇
  2018年   11篇
  2017年   11篇
  2016年   15篇
  2015年   15篇
  2014年   20篇
  2013年   16篇
  2012年   16篇
  2011年   16篇
  2010年   9篇
  2009年   20篇
  2008年   17篇
  2007年   24篇
  2006年   19篇
  2005年   22篇
  2004年   6篇
  2003年   4篇
  2002年   9篇
  2001年   6篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
  1972年   2篇
排序方式: 共有310条查询结果,搜索用时 15 毫秒
91.
Abstract: Estimating stream temperatures across broad spatial extents is important for regional conservation of running waters. Although statistical models can be useful in this endeavor, little information exists to aid in the selection of a particular statistical approach. Our objective was to compare the accuracy of ordinary least‐squares multiple linear regression, generalized additive modeling, ordinary kriging, and linear mixed modeling (LMM) using July mean stream temperatures in Michigan and Wisconsin. Although LMM using low‐rank thin‐plate smoothing splines to measure the spatial autocorrelation in stream temperatures was the most accurate modeling approach; overall, there were only slight differences in prediction accuracy among the evaluated approaches. This suggests that managers and researchers can select a stream temperature modeling approach that meets their level of expertise without sacrificing substantial amounts of prediction accuracy. The most accurate models for Michigan and Wisconsin had root mean square errors of 2.0‐2.3°C, suggesting that only relatively coarse predictions can be produced from landscape‐based statistical models at regional scales. Explaining substantially more variability in stream temperatures likely will require the collection of finer‐scale hydrologic and physiographic data, which may be cost prohibitive for monitoring and assessing stream temperatures at regional scales.  相似文献   
92.
Abstract: This paper reviews several recent case studies in which states or countries have strengthened their protection of environmental flows to explore the key policy, stakeholder, and scientific elements that contributed to these advances in water management. A conceptual framework is developed to describe the actions of interest groups and individuals, how environmental flow issues get onto the formal agenda of decision makers, the events and conditions which precipitate this attention, the role of science and scientific uncertainty, and how interactions and dialog among individuals and groups with different interests lead to changes in state and national statutes. In general, the review found that changing policies is a result of actions of informed groups of interested parties using science and information to inform both the public and decision makers about the need for action and about the specific action needed. In almost all cases, environmental flow issues make it onto the formal agenda of institutions through one or more precipitating events, often legal challenges that call into question the existing legal framework for water management. Significantly, in almost all cases the engagement between advocacy coalitions with different and often opposing views results in reframing the issues to provide a common approach or solution upon which the competing coalitions can agree.  相似文献   
93.
Todd, M. Jason, George Vellidis, R. Richard Lowrance, and Catherine M. Pringle, 2009. High Sediment Oxygen Demand Within an Instream Swamp in Southern Georgia: Implications for Low Dissolved Oxygen Levels in Coastal Blackwater Streams. Journal of the American Water Resources Association (JAWRA) 45(6):1493‐1507. Abstract: Sediment oxygen demand (SOD) is considered a critical and dominant sink for dissolved oxygen (DO) in many river systems including blackwater streams and is often poorly investigated or roughly estimated in oxygen budgets. The purposes of this study are to (1) characterize and document the magnitude and variability of SOD in representative instream swamps found on the Georgia Coastal Plain; (2) predict SOD from more readily measured parameters such as soil, sediment, and litter organic carbon; and (3) obtain an accurate representation of SOD values within this understudied habitat to help improve water quality models and the continued development of DO as an appropriate water quality standard. Results show SOD rates ranging from 0.491 to 14.189 g O2/m2/day, up to 18 times higher than values reported for southeastern sandy‐bottomed streams and suggest that instream swamps are repositories of large amounts of organic matter and are thus areas of intense oxygen demand and a major factor in determining the oxygen balance of the watershed as a whole. These areas of intense oxygen demand in relatively unimpacted areas indicate that low DO concentrations may be a natural phenomenon. SOD rates were significantly correlated (alpha = 0.05) with a number of sediment parameters, with organic carbon and total organic carbon being the best predictors of SOD rate. When developing water quality models, managers should pay closer attention to the influence of SOD as it plays a critical role in determining DO levels within instream swamps and the river system.  相似文献   
94.
Total annual nutrient loads are a function of both watershed characteristics and the magnitude of nutrient mobilizing events. We investigated linkages among land cover, discharge and total phosphorus (TP) concentrations, and loads in 25 Kansas streams. Stream monitoring locations were selected from the Kansas Department of Health and Environment stream chemistry long-term monitoring network sites at or near U.S. Geological Survey stream gauges. We linked each sample with concurrent discharge data to improve our ability to estimate TP concentrations and loads across the full range of possible flow conditions. Median TP concentration was strongly linked (R 2 = 76%) to the presence of cropland in the riparian zones of the mostly perennial streams. At baseflow, discharge data did not improve prediction of TP, but at high flows discharge was strongly linked to concentration (a threshold response occurred). Our data suggest that on average 88% of the total load occurred during the 10% of the time with the greatest discharge. Modeled reductions in peak discharges, representing increased hydrologic retention, predicted greater decreases in total annual loads than reductions of ambient concentrations because high discharge and elevated phosphorus concentrations had multiplicative effects. No measure of land use provided significant predictive power for concentrations when discharge was elevated or for concentration rise rates under increasing discharge. These results suggest that reductions of baseflow concentrations of TP in streams without wastewater dischargers may be managed by reductions of cropland uses in the riparian corridor. Additional measures may be needed to manage TP annual loads, due to the large percentage of the TP load occurring during a few high-flow events each year.  相似文献   
95.
Selection of fish species for sampling to assess extent and potential effects of fish tissue contaminants is a criticalconsideration in the design of regional probability-designsurveys. The ideal species would be ubiquitous, bioaccumulatetoxic chemicals, and be prey of consumers of concern(piscivorous wildlife, humans). In first to third order streams,small short-lived forage fish (minnows (F. Cyprinidae), darters (F. Percidae), and sculpins (F. Cottidae), are more frequently found and therefore likely to be prey to more species ofwildlife than those of sportfish whose adults grow to a largesize (suckers (F. Catostomidae), trout (F. Salmonidae), bass, andsunfish (F. Centrarchidae), and carp). Targeting smaller foragefish should also produce a larger number of individuals persample on average than may be achieved with the larger species.An analysis of fish collected in 1993 and 1994 as part of theMid-Atlantic Highlands Assessment (MAHA) showed that, asexpected, forage fish were more ubiquitous than sportfishspecies. Analysis also revealed that, on a regional basis, forage fish bioaccumulated comparable levels to sportfish, ofsome widely occurring contaminants such as DDT, MeHg, and PCBs.Results indicated that smaller forage fish can be used asindicator species for a regional assessment for mostcontaminants (Zn being the one clear exception), that was notsignificantly different from one based on the larger species.Forage fish may therefore be an excellent choice as indicatorspecies for regional streams ecological risk assessment studies.  相似文献   
96.
Abstract: Managers, regulators, and researchers of aquatic ecosystems are increasingly pressed to consider large areas. However, accurate stream maps with geo‐referenced attributes are uncommon over relevant spatial extents. Field inventories provide high‐quality data, particularly for habitat characteristics at fine spatial resolutions (e.g., large wood), but are costly and so cover relatively small areas. Recent availability of regional digital data and Geographic Information Systems software has advanced capabilities to delineate stream networks and estimate coarse‐resolution hydrogeomorphic attributes (e.g., gradient). A spatially comprehensive coverage results, but types of modeled outputs may be limited and their accuracy is typically unknown. Capitalizing on strengths in both field and regional digital data, we modeled a synthetic stream network and a variety of hydrogeomorphic attributes for the Oregon Coastal Province. The synthetic network, encompassing 96,000 km of stream, was derived from digital elevation data. We used high‐resolution but spatially restricted data from field inventories and streamflow gauges to evaluate, calibrate, and interpret hydrogeomorphic attributes modeled from digital elevation and precipitation data. The attributes we chose to model (drainage area, mean annual precipitation, mean annual flow, probability of perennial flow, channel gradient, active‐channel width and depth, valley‐floor width, valley‐width index, and valley constraint) have demonstrated value for stream research and management. For most of these attributes, field‐measured, and modeled values were highly correlated, yielding confidence in the modeled outputs. The modeled stream network and attributes have been used for a variety of purposes, including mapping riparian areas, identifying headwater streams likely to transport debris flows, and characterizing the potential of streams to provide high‐quality habitat for salmonids. Our framework and models can be adapted and applied to areas where the necessary field and digital data exist or can be obtained.  相似文献   
97.
Abstract: Being able to identify riparian sites that function better for nitrate removal from groundwater is critical to using efficiently the riparian zones for water quality management. For this purpose, managers need a method that is quick, inexpensive, and accurate enough to enable effective management decisions. This study assesses the precision and accuracy of a simple method using three ground water wells and one measurement date for determining nitrate removal characteristics of riparian buffer zones. The method is a scaled‐down version of a complex field research method that consists of a large network of wells and piezometers monitored monthly for over two years. Results using the simplified method were compared to those from the reference research method on a date‐by‐date basis on eight sites covering a wide range of hydrogeomorphic settings. The accuracy of the three‐well, 1 day measurement method was relatively good for assessing nitrate concentration depletion across riparian zones, but poor for assessing the distance necessary to achieve a 90% nitrate removal and for estimating water and nitrate fluxes compared to the reference method. The simplified three‐well method provides relatively better estimates of water and nitrate fluxes on sites where ground‐water flow is parallel to the water table through homogeneous aquifer material, but such conditions may not be geographically widespread. Despite limited overall accuracy, some parameters that are estimated using the simplified method may be useful to water resource managers. Nitrate depletion information may be used to assess the adequacy of existing buffers to achieve nitrate concentration goals for runoff. Estimates of field nitrate runoff and buffer removal fluxes may be adequate for prioritizing management toward sites where riparian buffers are likely to have greater impact on stream water quality.  相似文献   
98.
Abstract: Cumulatively, headwater streams contribute to maintaining hydrologic connectivity and ecosystem integrity at regional scales. Hydrologic connectivity is the water‐mediated transport of matter, energy and organisms within or between elements of the hydrologic cycle. Headwater streams compose over two‐thirds of total stream length in a typical river drainage and directly connect the upland and riparian landscape to the rest of the stream ecosystem. Altering headwater streams, e.g., by channelization, diversion through pipes, impoundment and burial, modifies fluxes between uplands and downstream river segments and eliminates distinctive habitats. The large‐scale ecological effects of altering headwaters are amplified by land uses that alter runoff and nutrient loads to streams, and by widespread dam construction on larger rivers (which frequently leaves free‐flowing upstream portions of river systems essential to sustaining aquatic biodiversity). We discuss three examples of large‐scale consequences of cumulative headwater alteration. Downstream eutrophication and coastal hypoxia result, in part, from agricultural practices that alter headwaters and wetlands while increasing nutrient runoff. Extensive headwater alteration is also expected to lower secondary productivity of river systems by reducing stream‐system length and trophic subsidies to downstream river segments, affecting aquatic communities and terrestrial wildlife that utilize aquatic resources. Reduced viability of freshwater biota may occur with cumulative headwater alteration, including for species that occupy a range of stream sizes but for which headwater streams diversify the network of interconnected populations or enhance survival for particular life stages. Developing a more predictive understanding of ecological patterns that may emerge on regional scales as a result of headwater alterations will require studies focused on components and pathways that connect headwaters to river, coastal and terrestrial ecosystems. Linkages between headwaters and downstream ecosystems cannot be discounted when addressing large‐scale issues such as hypoxia in the Gulf of Mexico and global losses of biodiversity.  相似文献   
99.
Abstract: Headwater streams make up a large proportion of the total length and watershed area of fluvial networks, and are partially characterized by the large volume of organic matter (large wood, detritus, and dissolved organic matter) and invertebrate inputs from the riparian forest, relative to stream size. Much of those inputs are exported to downstream reaches through time where they potentially subsidize river communities. The relative rates, timing, and conversion processes that carry inputs from small streams to downstream reaches are reasonably well quantified. For example, larger particles are converted to smaller particles, which are more easily exported. Also, dissolved organic matter and surface biofilms are converted to larger particles which can be more easily intercepted by consumers. However, the quality of these materials as it affects biological activity downstream is not well known, nor is the extent to which timing permits biological use of those particles. These ecological unknowns need to be resolved. Further, land uses may disrupt and diminish material transport to downstream reaches by removing sources (e.g., forest harvest), by affecting transport and decomposition processes (e.g., flow regulation, irrigation, changes in biotic communities), and by altering mechanisms of storage within headwaters (e.g., channelization). We present conceptual models of energy and nutrient fluxes that outline small stream processes and pathways important to downstream communities, and we identify informational gaps that, if filled, could significantly advance the understanding of linkages between headwater streams and larger rivers. The models, based on empirical evidence and best professional judgment, suggest that navigable waters are significantly influenced by headwater streams through hydrological and ecological connectivities, and land use can dramatically influence these natural connectivities, impacting downstream riverine ecosystems.  相似文献   
100.
Abstract: The Crown of the Continent is one of the premiere ecosystems in North America containing Waterton‐Glacier International Peace Park, the Bob Marshall‐Great Bear‐Scapegoat Wilderness Complex in Montana, various Provincial Parks in British Columbia and Alberta, several national and state forest lands in the USA, and Crown Lands in Canada. The region is also the headwater source for three of the continent’s great rivers: Columbia, Missouri and Saskatchewan that flow to the Pacific, Atlantic and Arctic Oceans, respectively. Headwaters originate in high elevation alpine environs characterized by high snow accumulations in winter and rainstorms in summer. Most headwaters of the region contain high quality waters with few ions in solution and extremely low nutrient concentrations. Alpine streams have few species of aquatic organisms; however, they often possess rare species and have hydrogeomorphic features that make them vulnerable to climatic change. Subalpine and valley bottom streams of the Crown of the Continent Ecosystem (CCE) flow through well forested watersheds. Along the elevation gradient, the streams and rivers of the CCE flow through series of confining and nonconfining valleys resulting in distinct canyon and floodplain reaches. The alluvial floodplains are characterized by high species diversity and bioproduction maintained by the hydrologic linkages of habitats. The streams and rivers of the CCE have low nutrient concentrations, but may be significantly affected by wildfire, various resource extraction activities, such as logging or mining and exurban encroachment. Wildfire has been shown to increase nutrient loading in streams, both during a fire and then following the fire for as much as 5 years. Logging practices increase nutrient loading and the algal productivity of stream periphyton. Logging and associated roads are also known to increase sediment transport into Crown of the Continent streams directly affecting spawning success of native trout. The CCE is one of the fastest growing regions in the USA because of the many recreational amenities of the region. And, while the region has many remarkably pristine headwater streams and receiving rivers, there are many pending threats to water quality and quantity. One of the most urgent threats comes from the coal and gas fields in the northern part of the Crown of the Continent, where coal deposits are proposed for mountain‐top removal and open‐pit mining operations. This will have significant effects on the waters of the region, its native plants and animals and quality of life of the people.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号