首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   6篇
  国内免费   28篇
安全科学   2篇
废物处理   5篇
环保管理   29篇
综合类   50篇
基础理论   23篇
污染及防治   9篇
评价与监测   1篇
社会与环境   14篇
  2022年   1篇
  2021年   5篇
  2020年   4篇
  2019年   7篇
  2018年   14篇
  2017年   9篇
  2016年   9篇
  2015年   4篇
  2014年   8篇
  2013年   13篇
  2012年   11篇
  2011年   9篇
  2010年   5篇
  2009年   4篇
  2008年   5篇
  2007年   7篇
  2006年   7篇
  2005年   4篇
  2004年   3篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
排序方式: 共有133条查询结果,搜索用时 15 毫秒
11.
采用温室盆栽实验,研究了在不同剂量(质量分数分别为0、0.10%、0.25%、0.5%和1.0%)石灰石改良条件下,大宝山矿强酸性多金属不同污染程度土壤中麻疯树的生长状况和吸收金属特征,并探讨了麻疯树在酸性土壤中生长的抑制因素和石灰石改良适宜剂量.研究表明,在低污染酸性土壤中,Cu和Pb的高活性可能是抑制麻疯树生长的主要因素;而在高污染酸性土壤中,Cd、Cu、Zn等金属的高活性及由强酸引起的Al毒也可能是抑制麻疯树生长的主要因素;石灰石通过提高土壤pH值和降低多金属的生物有效态含量,促进了麻疯树在低污和高污土壤中的生长,其最佳剂量分别为0.25%和0.5%;石灰石可以不同程度地降低麻疯树地上部和地下舔的Cd、Cu、Pb、Zn和Al含量,同时随石灰石用量的增加,其金属含量基本呈降低趋势;麻疯树地下部金属含量高于地上部,且石灰石对麻疯树地下部金属(除Cd外)含量降低幅度较地上部大.因此,种植麻疯树与石灰石改良是联合修复大宝山矿酸性多金属污染土壤的有效措施之一.  相似文献   
12.
In the present study, response surface methodology (RSM) involving central composite design (CCD) was applied to optimize the reaction parameters of biodiesel production from yellow mustard (Sinapis alba L.) seed oil during the single-step transesterification process. A total of 30 experiments were designed and performed to determine under the effects of variables on the biodiesel yield such as methanol to oil molar ratio (2:1–10:1), catalyst concentration (0.2–1.0 wt.% NaOH), reaction temperature (50–70°C), and reaction time (30–90 min). The second order polynomial model was used to predict the biodiesel yield and coefficient of determination (R2) was found to be at 0.9818. The optimum biodiesel yield was calculated as 96.695% from the model with the following reaction conditions: 7.41:1 of methanol to oil molar ratio, 0.63 wt. % NaOH of catalyst concentration, 61.84°C of reaction temperature, and 62.12 min of reaction time. It is seen that the regression model results were in agreement with the experimental data. The results showed that RSM is a suitable statistical technique for optimizing the reaction parameters in the transesterification process in order to maximize the biodiesel yield.  相似文献   
13.
The use of metal-accumulating plants for the phytoremediation of contaminated soils is gaining more attention. Mercury(Hg)-contaminated soils from historical gold mines represent a potential risk to human health and the environment. Therefore, Jatropha curcas plant, that has shown its tolerance to these environments, is a species of particular interest to implement phytoremediation techniques in gold mining sites. In this work, the behavior of J. curcas was assessed in different hydroponic cultures fortified with Hg at concentrations of 5, 10, 20, 40, and 80 μg Hg/mL(T5, T10, T20, T40 and T80, respectively). After exposure,plant growth, net photosynthesis, leaf area, and Hg accumulation were determined and variables such as net Hg uptake, effective Hg accumulation, translocation and bioaccumulation factors were calculated. Accumulation of Hg in root and leaf tissues increased with respect to the Hg concentrations in the hydroponic culture, with statistically significant differences(p 0.05) among treatments. Moreover, Hg concentration in roots was 7 and 12-fold higher in average than in plant leaves and shoots, respectively. Many effects were found in the development of plants, especially related with loss of biomass and leaf area,with significant growth inhibition related to control values( 50% with treatment T5).Moreover, percentage of inhibition was even higher( 60%) with same treatment for net photosynthesis. Finally, it should be highlighted that for T40 and T80 treatments, plant growth and photosynthesis were almost completely depleted(88%–95%).  相似文献   
14.
Biodiesels have come up as a very strong alternative for diesel fuel. Biodiesels such as Jatropha Oil Methyl Ester (JOME) are comparable in performance with that of the diesel engine. The thermal efficiency of engines fuelled with biodiesels was found lower than conventional diesel fuel but due to the bio-origin, the emission characteristics are much better. However, biodiesel increases the NOx emissions as these are rich in oxygen, hence nanoparticles are used in this experiment to curb the high temperatures and reduce the NOx formation. The experiment on naturally aspired diesel engine was conducted with four prepared test fuels other than neat diesel and neat biodiesel. The 50 and 150 of alumina nanoparticles were added separately to the pure diesel and pure Jatropha biodiesel to form the nano emulsions using ultrasonicator. The properties of nanoemulsion were evaluated using dynamic light scattering technique using zetasizer. The performance and emission characteristics of multi-cylinder diesel engine with these nanoemulsions were compared with that of neat fuels. The results showed that using nanoparticles with diesel and biodiesel can contribute in a more efficient, economical, and eco-friendly engine operation.  相似文献   
15.
DOC+CDPF对生物柴油燃烧颗粒排放特性的影响   总被引:2,自引:0,他引:2  
以一台满足国五排放法规的车用柴油机为样机,研究加装氧化催化转化器DOC与催化型颗粒捕集器CDPF(DOC+CDPF后处理装置)前后,柴油机燃用B20燃料(燃料含20%体积掺混比的生物柴油)的颗粒排放特性.结果表明,在未加装该后处理装置时,该机排气颗粒数量浓度的粒径分布呈双峰形态,B20燃料的排气颗粒数量浓度的峰值粒径在10nm和50nm附近,纯柴油的排气颗粒数量浓度的峰值粒径在50nm和200nm附近.在颗粒粒径小于120nm的区域,该机燃用B20燃料的排气颗粒数量浓度大于纯柴油.加装该后处理装置后,该机排气颗粒数量浓度的粒径分布呈多峰形态,峰值粒径在10nm、20nm和60nm附近.加装DOC+CDPF后,不论是柴油还是B20燃料,与原机相比,柴油机排气颗粒总数量下降明显,其中60~200nm粒径范围的颗粒数量浓度降幅更为显著.在相同工况下,DOC+CDPF对柴油机燃用B20燃料的颗粒总数量净化效率高于纯柴油.  相似文献   
16.
在186F柴油机上进行了台架试验,测定了柴油机燃用十六烷值分别为46、50、55的甲醇/生物柴油的排放污染物及燃油消耗.考察了十六烷值对柴油机燃烧甲醇/生物柴油的排放污染物、经济性的影响.结果表明:在标定工况时,当甲醇/生物柴油的十六烷值为46、50、55时,NOx浓度分别为155×10-6、142×10-6、135×10-6;烟度分别为3.4、2.3、3.0;HC浓度分别为89×10-6、193×10-6、284×10-6;CO浓度分别为0.5%、0.8%、1.2%.随着甲醇/生物柴油十六烷值的增加,柴油机排放污染物中的NOx浓度和烟度降低,但HC和CO浓度增加.甲醇/生物柴油的十六烷值不能过高,否则会使柴油机排放污染物急剧增加.  相似文献   
17.
The effects of a diesel oxidation catalytic (DOC) converter on diesel engine emissions were investigated on a diesel bench at various loads for two steady-state speeds using diesel fuel and B20. The DOC was very effective in hydrocarbon (HC) and CO oxidation. Approximately 90%–95% reduction in CO and 36%–70% reduction in HC were realized using the DOC. Special attention was focused on the effects of the DOC on elemental carbon (EC) and organic carbon (OC) fractions in fine particles (PM2.5) emitted from the diesel engine. The carbonaceous compositions of PM2.5 were analyzed by the method of thermal/optical reflectance (TOR). The results showed that total carbon (TC), OC and EC emissions for PM2.5 from diesel fuel were generally reduced by the DOC. For diesel fuel, TC emissions decreased 22%–32% after the DOC depending on operating modes. The decrease in TC was attributed to 35%–97% decrease in OC and 3%–65% decrease in EC emissions. At low load, a significant increase in the OC/EC ratio of PM2.5 was observed after the DOC. The effect of the DOC on the carbonaceous compositions in PM2.5 from B20 showed different trends compared to diesel fuel. At low load, a slight increase in EC emissions and a significant decrease in OC/EC ratio of PM2.5 after DOC were observed for B20.  相似文献   
18.
李翠  刘慧 《环境工程》2010,28(4):39-41
采用絮凝的方法,对桐油制备生物柴油副产物甘油的去杂工艺条件进行了研究。考察了不同絮凝剂及絮凝剂用量、pH值、搅拌时间、反应温度等条件对甘油絮凝去除杂质的效果和甘油回收率的影响。结果表明:采用硫酸铝絮凝剂,在絮凝剂用量为0.2%,pH值为6.0,搅拌时间为5 min,反应温度为20℃的条件下去杂效果最好,甘油回收率为80.45%。  相似文献   
19.
Solubilizing experiments were carried out to evaluate the ability of biodiesel to remove polycyclic aromatic hydrocarbons (PAHs) from highly contaminated manufactured gas plant (MGP) and PAHs spiked soils with hydroxypropyl-β-cyclodextrin (HPCD) and tween 80 as comparisons. Biodiesel displayed the highest solubilities of phenanthrene (420.7 mg·L-1), pyrene (541.0 mg·L-1), and benzo(a)pyrene (436.3 mg·L-1). These corresponded to several fold increases relative to 10% HPCD and tween 80. Biodiesel showed a good efficiency for PAH removal from the spiked and MGP soils for both low molecular weight and high molecular weight PAHs at high concentrations. Biodiesel was the best agent for PAH removal from the spiked soils as compared with HPCD and tween 80; as over 77.9% of individual PAH were removed by biodiesel. Tween 80 also showed comparable capability with biodiesel for PAH solubilization at a concentration of 10% for the spiked soils. Biodiesel solubilized a wider range of PAHs as compared to HPCD and tween 80 for the MPG soils. At PAH concentrations of 229.6 and 996.9 mg·kg-1, biodiesel showed obvious advantage over the 10% HPCD and tween 80, because it removed higher than 80% of total PAH. In this study, a significant difference between PAH removals from the spiked and field MGP soils was observed; PAH removals from the MGP soil by HPCD and tween 80 were much lower than those from the spiked soil. These results demonstrate that the potential for utilizing biodiesel for remediation of highly PAH-contaminated soil has been established.  相似文献   
20.
单缸柴油机作为小型农用机械不可或缺的动力源,在使用过程中会产生大量污染物.其中氮氧化合物(NOx)和颗粒(PM)是气溶胶的主要组成部分,对大气环境造成了严重污染.为有效改善农用单缸柴油机NOx和PM排放,本研究通过添加生物柴油对柴油进行改质以及采用机内EGR净化技术两种方案,测量了柴油机分别燃用柴油B0,生物柴油调合燃料B20、B50在不同EGR率下的NOx和PM排放.结果表明,采用EGR技术能够明显改善柴油机的NOx排放,但同时会引起碳烟排放的增加.通过在柴油中添加生物柴油能够在一定程度上降低碳烟排放,其中高负荷、大EGR率条件下的改善最为明显.在2000 r·min-1、75%负荷,EGR率为30%时,燃用B50的碳烟排放与燃用B0相比降低了47.3%.总体上柴油中添加生物柴油与EGR技术共同作用能够有效降低柴油机高负荷工况时的颗粒排放总数量.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号