首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   3篇
  国内免费   27篇
安全科学   45篇
废物处理   18篇
环保管理   20篇
综合类   62篇
基础理论   15篇
污染及防治   33篇
评价与监测   8篇
社会与环境   2篇
  2023年   10篇
  2022年   7篇
  2021年   9篇
  2020年   9篇
  2019年   3篇
  2018年   7篇
  2017年   3篇
  2016年   9篇
  2015年   13篇
  2014年   14篇
  2013年   14篇
  2012年   13篇
  2011年   6篇
  2010年   3篇
  2009年   11篇
  2008年   6篇
  2007年   16篇
  2006年   1篇
  2005年   11篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1997年   5篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
排序方式: 共有203条查询结果,搜索用时 15 毫秒
191.
Agricultural sources of atmospheric methane include flooded rice (Oryza sativa L.) paddies. However, certain soil nutrient management and cultural practices offer opportunities to reduce methane emissions. The effect of application of ammonium thiosulphate, a potential source of nitrogen and sulphur and also an inhibitor of nitrification and urease on methane production and emission from flooded alluvial (Typic Haplaquept) rice soil in India, was examined. Methane production and emission from control and urea-amended soil samples were almost identical. Application of ammonium thiosulphate to laboratory-incubated flooded soil (30 and 60 μg N g−1 soil) and flooded rice fields (45.6 and 60 kg N ha−1) effected a distinct inhibition of methane production and emission. Ammonium thiosulphate stimulated the population of sulphate-reducing bacteria (SRB) to a greater extent at 60 μg N g−1 soil than at 30 μg N g−1 soil. In ammonium thiosulphate-applied rice field plots, mean methane efflux decreased by about 38 and 60% at 45.6 and 60 kg N ha−1, respectively, over that of control. Inhibition of methane production by ammonium thiosulphate is, at least in part, due to the stimulation of SRB. Results suggest the mitigation potential of ammonium thiosulphate on methane emission from flooded rice paddies.  相似文献   
192.
Coal production globally is projected to grow in the foreseeable future. Countries with heavy reliance on coal could reduce methane and other emissions through the capture and utilization of coal mine methane (CMM) in the short and medium term, while they pursue structural and long-term economic changes. Several countries have successfully implemented policies to promote CMM capture and utilization; however, some countries still struggle to implement projects. This paper outlines key factors to consider in adapting policies for CMM mitigation. The authors propose an approach for selecting adequate mechanisms for stimulating CMM mitigation that involves reviewing global best practices and categorizing them functionally either as mechanisms needed to improve the underlying conditions or as CMM-specific policies. It is important to understand local policy frameworks and to consider whether it is more feasible to improve underlying policy conditions or to provide targeted incentives as an interim measure.Using Kazakhstan as a case study, the authors demonstrate how policymakers could assess the overall policy framework to find the most promising options to facilitate CMM projects. Kazakhstan’s emissions from underground coal mines have been increasing both in total and per tonne of coal production, while overall production has been declining. CMM mitigation presents an opportunity for the country to reduce its greenhouse gas emissions in the near and medium term, while the government pursues sustainable development goals. Analysis shows that policymakers in Kazakhstan can leverage existing policies to stimulate utilization by extending feed-in tariffs to cover CMM and by developing working methodologies for companies to obtain emission reduction credits from CMM projects.  相似文献   
193.
Experiments and numerical simulation on methane flame quenching by water mist   总被引:11,自引:0,他引:11  
The study of extinguishment using water mist has been motivated due to the phase-out of the use of halens and the search for alternative means that preserve all of the benefits of a clean total flooding agent without adverse environmental impact. With the numerical simulation, we analyzed a gas–liquid two-phase problem including water (liquid), air and methane (gas) using Eulerian equations for the liquid phase and the full Navier–Stokes equations for the gas phase. Gaseous mass, momentum and energy equations are integrated simultaneously by a Harten–Yee explicit non-MUSCL modified-flux type TVD scheme for the convective terms and a central difference scheme for the viscous terms. Liquid phase conservation equations are solved with an application of a flux-vector-splitting scheme. In the experiments in an open room (500×500×500 mm) we observed an interaction of the diffusion flame with the water mists. The results show remarkable flame quenching and a good agreement between the numerical and experimental results.  相似文献   
194.
为了更好地利用厌氧处理产生的气体,在介绍模拟厌氧堆肥试验的基础上,对厌氧堆肥产甲烷的基本特性进行了研究。结果表明,在厌氧堆肥开始阶段20d左右,甲烷只有7.8%(质量分数,下同)左右,远远低于32.8%的二氧化碳;而随着反应的进行,二氧化碳呈下降趋势,甲烷先升高后降低,直到反应进行到第70天左右时,甲烷才逐渐高于二氧化碳,片于第90天左右时达到最高值42.0%;此后二氧化碳及甲烷都逐渐降低,但甲烷始终高于二氧化碳。  相似文献   
195.
Multi-component gas mixture explosion accidents occur and recur frequently, while the safety issues of multi-component gas mixture explosion for hydrogen–methane mixtures have rarely been addressed.Numerical simulation study on the confined and vented explosion characteristics of methane-hydrogen mixture in stoichiometric air was conducted both in the 5 L vessel and the 64 m3 chamber, involving different mixture compositions and initial pressures. Based on the results and analysis, it is shown that the addition of hydrogen has a negative effect on the explosion pressure of methane-hydrogen mixture at adiabatic condition. While in the vented explosion, the addition of the hydrogen has a significant positive effect on the explosion hazard degree. Additionally, the addition of hydrogen can induce a faster reactivity and enhance the sensitivity of the mixture by reducing the explosion time and increasing the rate of pressure rise both in confined and vented explosion. Both the maximum pressure and the maximum rate of pressure rise increase with initial pressure as a linear function, and also rise with the increase of hydrogen content in fuel. The increase in the maximum rate of pressure rise is slight when hydrogen ratio is lower than 0.5, however, it become significant when hydrogen ratio is higher than 0.5. The maximum rate of pressure rise for stoichiometric hydrogen-air is about 10 times the one of stoichiometric methane-air.Furthermore, the vent plays an important role to relief pressure, causing the decrease in explosion pressure and rate of pressure rise, while it can greatly enhance the flame speed, which will extend the hazard range and induce secondary fire damages. Additionally it appears that the addition of hydrogen has a significant increasing effect on the flame speed. The propagation of flame speed in confined explosion can be divided into two stages, increase stage and decrease stage, higher hydrogen content, higher slope. But in the vented explosion, the flame speed keeps increasing with the distance from the ignition point.  相似文献   
196.
Lima IB 《Chemosphere》2005,59(11):1697-1702
Biogeochemical distinction of methane emissions to the atmosphere may essentially rely on the surface area and morphometry of Amazon hydroreservoirs. Tucuruí (deep) and Samuel (shallow) reservoirs released in average 13.82 ± 22.94 and 71.19 ± 107.4 mg CH4 m−2 d−1, respectively. δ13C–CH4 values from the sediments to the atmosphere indicate that the deep reservoir has extended methanotrophic layer, oxidizing large quantities of light isotope methane coming from the sediments, while sediment-generated methane can easily evade the shallow reservoir.  相似文献   
197.
In addition to national inventories of emissions of greenhouse gases, there are inventories for most, but not all, states constituting the United States. This paper analyzes the state inventories to see if reported emissions of carbon dioxide, methane, and nitrous oxide are additive. Considerable reanalysis of the state inventories is required before they can be added to yield a larger-scale inventory. Some specific sources were considered by some states but not by others. Estimation techniques evolved over time as inventories were produced, and there are instances of both double-counting (two states reporting the same emission) and omission (neither state reporting the same emission), where interstate transfers of energy or materials occurred. Nevertheless, the inventories, when adjusted for obvious double-counting or omissions, are probably approximately additive, although it is difficult to quantify the extent to which this is true.  相似文献   
198.
An analysis of published experimental data characterizing the influence of diluents of various chemical nature (both halogenated and chemically inert) on upper flammability limits of flammable gases in air (methane and hydrogen have been considered as examples) has been done. Dependences of critical oxygen concentration and critical fuel equivalence ratio cr for mixtures combustible–air–diluent at upper flammability limits on diluent concentration were determined. The obtained data were interpreted on the basis of the concept of self-inhibition at combustion of rich mixtures of organic combustibles in air. A method for evaluation of relative effectiveness of various inhibitors and for determination of availability of self-inhibitive properties of a combustible gas has been proposed.  相似文献   
199.
Flame propagation in hybrid mixture of coal dust and methane   总被引:1,自引:0,他引:1  
To investigate the flame propagation through hybrid mixture of coal dust and methane in a combustion chamber, a high-speed video camera with a microscopic lens and a Schlieren optical system were used to record the flame propagation process and to obtain the direct light emission photographs. Flame temperature was detected by a fine thermocouple. The suspended coal dust in the mixture of methane and air was ignited by an electric spark. The flame propagation speeds and maximum flame temperatures of the mixture were analyzed. The results show that the co-presence of coal dust and methane improves the flame propagation speed and maximum flame temperature notably, which become much higher than that of the single-coal dust flame. The flame front temperature varies with the coal dust concentration.  相似文献   
200.
The Russian natural gas industry is the world's largest producer and transporter of natural gas. This paper aims to characterize the methane emissions from Russian natural gas transmission operations, to explain projects to reduce these emissions, and to characterize the role of emissions reduction within the context of current GHG policy. It draws on the most recent independent measurements at all parts of the Russian long distance transport system made by the Wuppertal Institute in 2003 and combines these results with the findings from the US Natural Gas STAR Program on GHG mitigation options and economics.With this background the paper concludes that the methane emissions from the Russian natural gas long distance network are approximately 0.6% of the natural gas delivered. Mitigating these emissions can create new revenue streams for the operator in the form of reduced costs, increased gas throughput and sales, and earned carbon credits. Specific emissions sources that have cost-effective mitigation solutions are also opportunities for outside investment for the Joint Implementation Kyoto Protocol flexibility mechanism or other carbon markets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号