首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   2篇
  国内免费   21篇
环保管理   5篇
综合类   26篇
基础理论   5篇
污染及防治   29篇
评价与监测   3篇
社会与环境   2篇
  2023年   1篇
  2022年   6篇
  2021年   1篇
  2019年   3篇
  2018年   6篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2013年   3篇
  2012年   1篇
  2011年   14篇
  2010年   3篇
  2009年   5篇
  2008年   8篇
  2007年   1篇
  2006年   4篇
  2005年   1篇
  2002年   2篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1978年   1篇
排序方式: 共有70条查询结果,搜索用时 15 毫秒
61.
Jiang S  Liu X  Chen Q 《Chemosphere》2011,83(8):1108-1116
The toxicities and bioavailabilities of total mercury (THg) and methylmercury (MeHg) in aquatic systems have made them the subjects of recent research. In this study, we collected a lake sediment core from Ny-Ålesund in Svalbard and analyzed the distributions of THg and MeHg in the sediments. The increased trend of THg was caused by anthropogenic contamination since the 14th century through long-range transportation, especially after the industrial era. However, the peak values of Hg in surface sediment samples could be explained by the increased algal scavenging process in recent decades. All the biogeochemical proxies (e.g., pigments and diatom biomass) revealed recent sharp increases in aquatic primary production due to the current climate warming. Rock-Eval analyses indicated that algal-derived organic matter took up a large portion, and quantitative calculation showed that 89.6-95.8% of the Hg in post-1950 could be explained by scavenging. The distribution of MeHg has a close relationship with total Hg and organic matter. The oxidation-reduction condition is one of the possible factors affecting the methylation rates in H2 lake sediments. Higher algal productivity and organic matter actually led to the increased trend of methylation in the uppermost sediment. This study supports some new key hypotheses on climate-driven factors affecting Hg and MeHg cycling in High Arctic lake sediments.  相似文献   
62.
Mercury contamination in fish is a serious public health concern that contrasts with other health benefits of eating fish. Like most US states, Illinois has monitored fish mercury contamination for decades to warn the public of mercury exposure risks by consuming fish. Has this monitoring program been effective in detecting public mercury exposure risks? I analyzed fish mercury contamination data from Illinois inland lakes (1974–1998; >?2,300 samples, 18 fish species, 149 lakes) and found that: (a) sampling and analyses have been severely limited since 1985; (b) sampling effort varied widely among lakes and species, and (c) trends and spatial patterns were confused by this variability. As a result of a severely limited and nonstrategic monitoring program, public mercury exposure risks via Illinois fish consumption remain unclear, despite much effort over many years. Illinois monitors fewer fish per angler than many US states, but is not alone in this regard. Illinois should resurrect and redesign its fish contaminant monitoring program to one that strategically and systematically assesses human mercury exposure risk. Other US states and nations may also benefit from similar retrospective examinations of monitoring programs intended to protect public health.  相似文献   
63.
This research tested whether limnological conditions, biological characteristics of fish and anthropogenic impacts influenced the assimilation of methylmercury into the muscle of a sedentary piscivorous fish, Cichla spp., from three rivers (Negro, Madeira, Tapajós) and two hydroelectric reservoirs (Balbina, Tucuruí) within the Brazilian Amazon. Methylmercury in this fish ranged from 0.04 to 1.43microgg(-1) w.w. across sites. No significant differences were observed in the methylmercury concentrations between males and females, or for different morphotypes of this species. Positive correlations were found between methylmercury and fish body weight. No differences were found between the weight normalized methylmercury (MeHg) concentrations or its percent of total mercury in fish from the three rivers; weight normalized MeHg was highest in one of the two reservoirs. In Rio Tapajós, where gold mining and deforestation cause high water turbidity, fish showed the highest MeHg and concentrations were different across the four sites examined. In all sampling areas, the %MeHg was found to be higher than 70.  相似文献   
64.
We analyzed Hg species distribution patterns among ecosystem compartments in the Everglades at the landscape level in order to explore the implications of Hg distribution for Hg bioaccumulation and to investigate major biogeochemical processes that are pertinent to the observed Hg distribution patterns. At an Everglade-wide scale, THg concentrations were significantly increased in the following order: periphyton相似文献   
65.
Historically, the element, mercury, has been widely applied in industry, agriculture, and medicine. The role of mercury in technological progress and therapeutic benefits has generally been quickly accepted despite sketchy trial-and-error methods used to evaluate its overall impact. The discovery of the negative side effects of mercury, such as degradation of the environment and the accompanying threat to human health, has often been overlooked, sometimes for centuries. Mercury Contamination: A Human Tragedy (Wiley-Interscience 1977) describes both historical and current applications of quicksilver, the impact on human beings and the environment, and the social and legal efforts to reform the abuses. The following exerpts are taken from the impact of mercury on human beings and the environment in various parts of the world.  相似文献   
66.
Higher methylmercury (MeHg) accumulation and susceptibility to toxicity in the fetus than in the mother at parturition is well known. However, the degree of MeHg accumulation in the brain during the late pregnancy period when the human brain is most vulnerable is not clear. In addition, changes in MeHg accumulation in the developing rat tissues with consecutive exposure throughout gestation and lactation periods have not been well studied. The purposes of this study were to evaluate the changes in MeHg accumulation in the brain and other tissues of the offspring, based on constant and consecutive doses of MeHg to mothers throughout gestation and lactation. Adult female rats were given a diet containing 5?ppm?Hg (as MeHg) for 8 weeks. Then they were mated and subsequently given the same diet throughout gestation and lactation. On embryonic days 18, 20, 22 and at parturition, the concentrations of Hg in the brains of the offspring were approximately 1.5–2.0 times higher than those in the mothers. On the other hand, during the suckling period Hg concentrations in the brain rapidly declined to about 1/10 of that during late pregnancy. Changes in MeHg accumulation in the blood and liver after parturition were similar to those in the brain. Thus, although mothers are subjected to constant and prolonged MeHg exposure throughout both the gestation and lactating periods, the risk to the offspring may be especially high throughout the late gestation period but rapidly decreases during the suckling period  相似文献   
67.
Soil macroinvertebrates as ecosystem engineers play significant, but largely ignored, roles in affecting mercury (Hg) cycle by altering soil physical-chemical properties. Ant is likely expanded into boreal mires with climate warming, however, its impacts on Hg cycle remained poorly understood. We compared total Hg (THg) and methylmercury (MeHg) contents in soils from antmounds (Lasius flavus) and the nearby ambient in a boreal mire in Northeast China. The present work seeks to unravel factors that controlling MeHg levels in case of ant appearance or absence. The average THg was 179 µg/kg in the ant mound and was 106.1 µg/kg in nearby soils, respectively. The average MeHg was 10.9 µg/kg in the ant mound and was 12.9 µg/kg in nearby soils, respectively. The ratios of MeHg to THg (%MeHg) were 7.61% in ant mounds and 16.75% in nearby soils, respectively. Ant colonization caused THg enrichment and MeHg depletion, and this change was obvious in the 10-20 cm depth soil layer where ants mainly inhabited. Spectrometry characteristics of soil dissolved organic matter (DOM) exert a stronger control than microorganisms on MeHg variation in soils. A structural equation model revealed that the molecular weight of DOM inhibited MeHg irrespective of ant presence or absence, while humification conducive to MeHg significantly in ant mound soils. Microorganisms mainly affected Hg methylation by altering the molecular weight and humification of DOM. We propose that the effects of ant colonization on MeHg rested on DOM feature variations caused by microorganisms in boreal mires.  相似文献   
68.
The water-level fluctuation zone (WLFZ) has been considered as a hotspot for mercury (Hg) methylation. Flooding-tolerant herbs are gradually acclimated to this water-land ecotone, tending to form substantial root systems for improving erosion resistance. Accompanying rhizosphere microzone plays crucial but unclear roles in methylmercury (MeHg) formation in the WLFZ. Thus, we conducted this study in the WLFZ of the Three Gorges Reservoir, to explore effects of the rhizosphere of a dominant flooding-tolerant herb (bermudagrass) on MeHg production. The elevated Hg and MeHg in rhizosphere soils suggest that the rhizosphere environment provides favorable conditions for Hg accumulation and methylation. The increased bioavailable Hg and microbial activity in the rhizosphere probably serve as important factors driving MeHg formation in the presence of bermudagrass. Simultaneously, the rhizosphere environments changed the richness, diversity, and distribution of hgcA-containing microorganisms. Here, a typical iron-reducing bacterium (Geobacteraceae) has been screened, however, the majority of hgcA genes detected in rhizosphere, near-, and non-rhizosphere soils of the WLFZ were unclassified. Collectively, these results provide new insights into the elevated MeHg production as related to microbial processes in the rhizosphere of perennial herbs in the WLFZ, with general implications for Hg cycling in other ecosystems with water-level fluctuations.  相似文献   
69.
From October 2003 to September 2004, we conducted a detailed study on the mass balance of total mercury (THg) and methylmercury (MeHg) of Dongfeng (DF) and Wujiangdu (WJD) reservoirs, which were constructed in 1992 and 1979, respectively. Both reservoirs were net sinks for THg on an annual scale, absorbing 3319.5 g km−2 for DF Reservoir, and 489.2 g km−2 for WJD Reservoirs, respectively. However, both reservoirs were net sources of MeHg to the downstream ecosystems. DF Reservoir provided a source of 32.9 g MeHg km−2 yr−1, yielding 10.3% of the amount of MeHg that entered the reservoir, and WJD Reservoir provided 140.9 g MeHg km−2 yr−1, yielding 82.5% of MeHg inputs. Our results implied that water residence time is an important variable affecting Hg methylation rate in the reservoirs. Our study shows that building a series of reservoirs in line along a river changes the riverine system into a natural Hg methylation factory which markedly increases the %MeHg in the downstream reservoirs; in effect magnifying the MeHg buildup problem in reservoirs.  相似文献   
70.
It is well-known that both clay and organic matter in soils play a key role in mercury biogeochemistry, while their combined effect is less studied. In this study, kaolinite, vermiculite, and montmorillonite were coated or not with humus, and spiked with inorganic mercury (IHg) or methylmercury (MeHg). The potential bioavailability of mercury to plants or deposit-feeders was assessed by CaCl2 or bovine serum albumin (BSA) extraction. For uncoated clay, IHg or MeHg extraction was generally lower in montmorillonite, due to its greater number of functional groups. Humus coating increased partitioning of IHg (0.5%–13.7%) and MeHg (0.8%–52.9%) in clay, because clay-sorbed humus provided more strong binding sites for mercury. Furthermore, humus coating led to a decrease in IHg (3.0%–59.8% for CaCl2 and 2.1%–5.0% for BSA) and MeHg (8.9%–74.6% for CaCl2 and 0.5%–8.2% for BSA) extraction, due to strong binding between mercury and clay-sorbed humus. Among various humus-coated clay particles, mercury extraction by CaCl2 (mainly through cation exchange) was lowest in humus-coated vermiculite, explained by the strong binding between humus and vermiculite. The inhibitory effect of humus on mercury bioavailability was also evidenced by the negative relationship between mercury extraction by CaCl2 and mercury in the organo-complexed fraction. In contrast, extraction of mercury by BSA (principally through complexation) was lowest in humus-coated montmorillonite. This was because BSA itself could be extensively sorbed onto montmorillonite. Results suggested that humus-coated clay could substantially decrease the potential bioavailability of mercury in soils, which should be considered when assessing risk in mercury-contaminated soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号