首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   3篇
  国内免费   13篇
安全科学   2篇
废物处理   3篇
环保管理   12篇
综合类   60篇
基础理论   6篇
污染及防治   33篇
评价与监测   11篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   4篇
  2015年   2篇
  2014年   3篇
  2013年   3篇
  2012年   3篇
  2011年   7篇
  2010年   5篇
  2009年   8篇
  2008年   5篇
  2007年   9篇
  2006年   9篇
  2004年   5篇
  2003年   3篇
  2002年   7篇
  2001年   9篇
  2000年   8篇
  1999年   3篇
  1998年   6篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1981年   1篇
排序方式: 共有127条查询结果,搜索用时 31 毫秒
71.
The development of highly active carbon material catalysts in catalytic wet air oxidation(CWAO)has attracted a great deal of attention. In this study different carbon material catalysts(multi-walled carbon nanotubes,carbon fibers and graphite) were developed to enhance the CWAO of phenol in aqueous solution. The functionalized carbon materials exhibited excellent catalytic activity in the CWAO of phenol. After 60 min reaction,the removal of phenol was nearly100% over the functionalized multi-walled carbon,while it was only 14% over the purified multi-walled carbon under the same reaction conditions. Carboxylic acid groups introduced on the surface of the functionalized carbon materials play an important role in the catalytic activity in CWAO. They can promote the production of free radicals,which act as strong oxidants in CWAO. Based on the analysis of the intermediates produced in the CWAO reactions,a new reaction pathway for the CWAO of phenol was proposed in this study. There are some differences between the proposed reaction pathway and that reported in the literature. First,maleic acid is transformed directly into malonic acid. Second,acetic acid is oxidized into an unknown intermediate,which is then oxidized into CO2 and H2O. Finally,formic acid and oxalic acid can mutually interconvert when conditions are favorable.  相似文献   
72.
Birnessite films on fluorine-doped tin oxide(FTO) coated glass were prepared by cathodic reduction of aqueous KMnO_4. The deposited birnessite films were characterized with X-ray diffraction, Raman spectroscopy, scanning electron microscopy and atomic force microscopy.The photoelectrochemical activity of birnessite films was investigated and a remarkable photocurrent in response to visible light was observed in the presence of phenol, resulting from localized manganese d–d transitions. Based on this result, the photoelectrocatalytic oxidation of phenol was investigated. Compared with phenol degradation by the electrochemical oxidation process or photocatalysis separately, a synergetic photoelectrocatalytic degradation effect was observed in the presence of the birnessite film coated FTO electrode.Photoelectrocatalytic degradation ratios were influenced by film thickness and initial phenol concentrations. Phenol degradation with the thinnest birnessite film and initial phenol concentration of 10 mg/L showed the highest efficiency of 91.4% after 8 hr. Meanwhile, the kinetics of phenol removal was fit well by the pseudofirst-order kinetic model.  相似文献   
73.
Manganese ferrite nanopowder was prepared by thermal decomposition at 400°C of the gel synthesized from manganese and iron nitrates and polyvinyl alcohol. X-ray diffractometry evidenced that manganese ferrite was formed as single crystalline phase at this temperature. Scanning electron microscope images evidenced the formation of very fine spherical particles(d 11 nm) of manganese ferrite, with specific surface area of 147 m~2/g.The powder obtained at 400°C was used as a catalyst for the oxidative degradation of phenol in aqueous solutions, in the presence of potassium peroxydisulfate as oxidant. High phenol removal efficiencies above 90% were reached at: pH 3–3.5, phenol initial concentration around 50 mg/L, peroxydisulfate:phenol mass ratio 10:1, and catalyst dose 3 g/L. Total organic carbon measurements showed that the degradation of phenol goes, under these conditions, to mineralization in an extent of 60%.  相似文献   
74.
Model compounds of phenol resin were reacted in sub- and supercritical water to clarify the mechanism of the decomposition reaction of plastics in water. Cleavage reaction of methylene bonds was confirmed in the reactions of model compounds of phenol resin such as bis(hydroxyphenyl)methanes in sub- and supercritical water under an Ar atmosphere, although the methylene bond was stable in thermal reactions. It was also confirmed that sub- and supercritical water played important roles not only as a stable solvent thermally, but also as a chemical reagent. Received: July 19, 2000 / Accepted: September 14, 2000  相似文献   
75.
采用精确称量苯酚制高浓度贮备液,可省略标定过程,并能获得准确的分析结果。  相似文献   
76.
Suryaman D  Hasegawa K  Kagaya S 《Chemosphere》2006,65(11):2502-2506
Phenol is degraded by biological treatment, however mineralization requires long time. To decrease the time and operational cost necessary for the mineralization of phenol, an optimum operation condition of the combined biological–photocatalytical treatment was investigated. The mineralization of phenol (50 mg l−1) was conducted in a flow-type biomembrane tank combined with a batch-type TiO2-suspended photocatalytic reactor. Phenol was degraded biologically to the concentration of 6.8 mg l−1, an effective concentration for further photocatalytic treatment. After the biological treatment, the biotreated phenol was treated photocatalytically to complete the mineralization of phenol. The combined treatment shortened the mineralization time compared to the biological treatment and electric cost compared to the photocatalytic treatment only. The combined treatment may be suitable for a short-time mineralization of phenol in wastewater.  相似文献   
77.
A quantitative methodology is described for the field-scale performance assessment of natural attenuation using plume-scale electron and carbon balances. This provides a practical framework for the calculation of global mass balances for contaminant plumes, using mass inputs from the plume source, background groundwater and plume residuals in a simplified box model. Biodegradation processes and reactions included in the analysis are identified from electron acceptors, electron donors and degradation products present in these inputs. Parameter values used in the model are obtained from data acquired during typical site investigation and groundwater monitoring studies for natural attenuation schemes. The approach is evaluated for a UK Permo-Triassic Sandstone aquifer contaminated with a plume of phenolic compounds. Uncertainty in the model predictions and sensitivity to parameter values was assessed by probabilistic modelling using Monte Carlo methods. Sensitivity analyses were compared for different input parameter probability distributions and a base case using fixed parameter values, using an identical conceptual model and data set. Results show that consumption of oxidants by biodegradation is approximately balanced by the production of CH4 and total dissolved inorganic carbon (TDIC) which is conserved in the plume. Under this condition, either the plume electron or carbon balance can be used to determine contaminant mass loss, which is equivalent to only 4% of the estimated source term. This corresponds to a first order, plume-averaged, half-life of > 800 years. The electron balance is particularly sensitive to uncertainty in the source term and dispersive inputs. Reliable historical information on contaminant spillages and detailed site investigation are necessary to accurately characterise the source term. The dispersive influx is sensitive to variability in the plume mixing zone width. Consumption of aqueous oxidants greatly exceeds that of mineral oxidants in the plume, but electron acceptor supply is insufficient to meet the electron donor demand and the plume will grow. The aquifer potential for degradation of these contaminants is limited by high contaminant concentrations and the supply of bioavailable electron acceptors. Natural attenuation will increase only after increased transport and dilution.  相似文献   
78.
Water at hydrothermal and supercritical conditions is considered a promising solvent for the degradation of hazardous waste into harmless compounds. Tar liquefaction experiments were conducted using a batch-type reactor at temperatures between 623 K and 673 K and at pressures between 25 and 40 MPa. A reaction mechanism for tar liquefaction is proposed. Moreover, on the basis of the experimental results, this method could become an efficient method for tar liquefaction, producing high yields of valuable chemical intermediates.  相似文献   
79.
本文研究了水中苯酚,糖醇及甲醛在NKA树脂上的吸附平衡,发现了各组份之间的竞争吸附特点,以及苯酚脱附过程中受到其它二组份的影响情况。  相似文献   
80.
A laboratory-scale intermittent aeration bioreactor was investigated to treat biologically pretreated coal gasification wastewater that was mainly composed of NH_3-N and phenol.The results showed that increasing phenol loading had an adverse effect on NH_3-N removal;the concentration in effluent at phenol loading of 40 mg phenol/(L·day) was 7.3 mg/L, 36.3%of that at 200 mg phenol/(L·day). The enzyme ammonia monooxygenase showed more sensitivity than hydroxylamine oxidoreductase to the inhibitory effect of phenol, with32.2% and 10.5% activity inhibition, respectively at 200 mg phenol/(L·day). Owing to intermittent aeration conditions, nitritation-type nitrification and simultaneous nitrification and denitrification(SND) were observed, giving a maximum SND efficiency of 30.5%.Additionally, ammonia oxidizing bacteria(AOB) and denitrifying bacteria were the main group identified by fluorescent in situ hybridization. However, their relative abundance represented opposite variations as phenol loading increased, ranging from 30.1% to 17.5%and 7.6% to 18.2% for AOB and denitrifying bacteria, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号