首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1094篇
  免费   39篇
  国内免费   84篇
安全科学   166篇
废物处理   12篇
环保管理   407篇
综合类   206篇
基础理论   191篇
环境理论   3篇
污染及防治   78篇
评价与监测   45篇
社会与环境   56篇
灾害及防治   53篇
  2023年   7篇
  2022年   22篇
  2021年   28篇
  2020年   36篇
  2019年   29篇
  2018年   24篇
  2017年   31篇
  2016年   48篇
  2015年   42篇
  2014年   40篇
  2013年   90篇
  2012年   40篇
  2011年   63篇
  2010年   30篇
  2009年   56篇
  2008年   47篇
  2007年   61篇
  2006年   52篇
  2005年   41篇
  2004年   41篇
  2003年   47篇
  2002年   26篇
  2001年   26篇
  2000年   32篇
  1999年   27篇
  1998年   19篇
  1997年   11篇
  1996年   17篇
  1995年   18篇
  1994年   16篇
  1993年   18篇
  1992年   10篇
  1991年   14篇
  1990年   4篇
  1989年   8篇
  1988年   11篇
  1987年   7篇
  1986年   6篇
  1982年   6篇
  1981年   4篇
  1980年   4篇
  1979年   6篇
  1978年   7篇
  1977年   3篇
  1975年   3篇
  1974年   3篇
  1973年   4篇
  1972年   10篇
  1971年   8篇
  1970年   4篇
排序方式: 共有1217条查询结果,搜索用时 417 毫秒
991.
ABSTRACT: Since the early 1970s, a large volume of literature has accumulated related to multiobjective water resources management problems. A relatively small portion of this specifically addresses the negotiation process required when there are multiple decision makers with conflicting objectives. This paper focuses on that process and describes a computer program designed to assist such negotiation processes. This interactive computer assisted negotiation support system is called ICANS. ICANS is designed for dynamic, multi-issue, multi-party negotiation problems. Based on information provided in confidence by each party via an interactive graphical interface, the program can help determine if there exist any possible alternatives that are equivalent or even preferred to each party's decision in the absence of a negotiated agreement. If such alternatives exist, through a series of iterations in which each party's input data, assumptions, and preferences may change, ICANS can assist the parties in their search for a mutually acceptable and preferred agreement. A simple example illustrates the data requirements and the use of ICANS in negotiation experiments.  相似文献   
992.
ABSTRACT: The temporal and locational attributes of water use data are ideally suited for analysis using a geographic information system (GIS) approach. A GIS combines spatial database management, statistical analysis, and cartographic modelling capabilities within a computer hardware and software configuration. Texas water use data for selected categories in 1980 and 1986 were analyzed using ARC/INFO to demonstrate the utility of GIS for water resource information management. Examples of data analysis and display are presented to illustrate the effectiveness of cartographic representations to communicate water use data.  相似文献   
993.
994.
ABSTRACT: The environmental setting of the Red River of the North basin within the United States is diverse in ways that could significantly control the areal distribution and flow of water and, therefore, the distribution and concentration of constituents that affect water quality. Continental glaciers shaped a landscape of very flat lake plains near the center of the basin, and gently rolling uplands, lakes, and wetlands along the basin margins. The fertile, black, fine-grained soils and landscape are conducive to agriculture. Productive cropland covers 66 percent of the land area. The principal crops are wheat, barley, soybeans, sunflowers, corn, and hay. Pasture, forests, open water, and wetlands comprise most of the remaining land area. About one-third of the 1990 population (511,000) lives in the cities of Fargo and Grand Forks, North Dakota and Moorhead, Minnesota. The climate of the Red River of the North basin is continental and ranges from dry subhumid in the western part of the basin to subhumid in the eastern part. From its origin, the Red River of the North meanders northward for 394 miles to the Canadian border, a path that is nearly double the straight-line distance. The Red River of the North normally receives over 75 percent of its annual flow from the eastern tributaries as a result of regional patterns of precipitation, evapotranspiration, soils, and topography. Most runoff occurs in spring and early summer as a result of rains falling on melting snow or heavy rains falling on saturated soils. Lakes, prairie potholes, and wetlands are abundant in most physiographic areas outside of the Red River Valley Lake Plain. Dams, drainage ditches, and wetlands alter the residence time of water, thereby affecting the amount of sediment, biota, and dissolved constituents carried by the water. Ground water available to wells, streams, and springs primarily comes from sand and gravel aquifers near land surface or buried within 100 to 300 feet of glacial drift that mantles the entire Red River of the North basin. Water moves through the system of bedrock and glacial-drift aquifers in a regional flow system generally toward the Red River of the North and in complex local flow systems controlled by local topography. Many of the bedrock and glacial-drift aquifers are hydraulically connected to streams in the region. The total water use in 1990, about 196 million gallons per day, was mostly for public supply and irrigation. Slightly more than one half of the water used comes from ground-water sources compared to surface-water sources. Most municipalities obtain their water from ground-water sources. However, the largest cities (Fargo, Grand Forks and Moorhead) obtain most of their water from the Red River of the North. The types and relative amounts of various habitats change among the five primary ecological regions within the Red River of the North basin. Headwater tributaries are more diverse and tend to be similar to middle-reach tributaries in character rather than the lower reaches of these tributaries for the Red River of the North. Concentrations of dissolved chemical constituents in surface waters are normally low during spring runoff and after thunderstorms. The Red River of the North generally has a dissolved-solids concentration less than 600 milligrams per liter with mean values ranging from 347 milligrams per liter near the headwaters to 406 milligrams per liter at the Canadian border near Emerson, Manitoba. Calcium and magnesium are the principal cations and bicarbonate is the principal anion along most of the reach of the Red River of the North. Dissolved-solids concentrations generally are lower in the eastern tributaries than in the tributaries draining the western part of the basin. At times of low flow, when water in streams is largely from ground-water seepage, the water quality more reflects the chemistry of the glacial-drift aquifer system. Ground water in the surficial aquifers commonly is a calcium bicarbonate type with dissolved-solids concentration generally between 300 and 700 milligrams per liter. As the ground water moves down gradient, dissolved-solids concentration increases, and magnesium and sulfate are predominant ions. Water in sedimentary bedrock aquifers is predominantly sodium and chloride and is characterized by dissolved-solids concentrations in excess of 1,000 milligrams per liter. Sediment erosion by wind and water can be increased by cultivation practices and by livestock that trample streambanks. Nitrate-nitrogen concentrations also can increase locally in surficial aquifers beneath cropland that is fertilized, particularly where irrigated. Nitrogen and phosphorous in surface runoff from cropland fertilizers and nitrogen from manure can contribute nutrients to lakes, reservoirs, and streams. Some of the more persistent pesticides, such as atrazine, have been detected in the Red River of the North. Few data are available to conclusively define the presence or absence of pesticides and their break-down products in Red River of the North basin aquifers or streams. Urban runoff and treated effluent from municipalities are discharged into streams. These point discharges contain some quantity of organic compounds from storm runoff, turf-applied pesticides, and trace metals. The largest releases of treated-municipal wastes are from the population centers along the Red River of the North and its larger tributaries. Sugar-beet refining, potato processing, poultry and meat packing, and milk, cheese, and cream processing are among the major food processes from which treated wastes are released to streams, mostly in or near the Red River of the North.  相似文献   
995.
ABSTRACT: Public awareness of the importance of protecting the nation's water supplies is growing. Recent studies have shown a substantial increase in the perceived value of protecting water supplies for future use. In the Northeast, much of the water supply comes from ground water. This paper examines three test cases, each with different approaches for using geographic information systems (GIS) for ground water protection planning. In Wellfleet, Massachusetts, build-out scenarios were used to support regulatory and land acquisition decisions for siting a public water supply well. In Hadley, Massachusetts, the focus was on a decision support model for septic suitability assessment in support of regulatory efforts and infrastructure expansion. For Cortland County, New York, an interactive graphic user interface was created to facilitate the manipulation and recombination of a large volume of data by county officials to target ground water pollution prevention efforts. As personal computers become more powerful and inexpensive, and GIS data become more readily available, community and county governments are turning to GIS as a tool for developing comprehensive resource protection plans. Once appropriate data are input, a GIS can effectively and efficiently be used to derive outcomes of various land use plans and regulations.  相似文献   
996.
ABSTRACT: The karez is a traditional irrigation water source, consisting of hand-dug horizontal wells, that is still used in parts of South Asia, the Middle East, and North Africa. This paper describes the construction, management, and current problems of karez irrigation systems based on investigations conducted in Baluchistan Province, Pakistan. While karezes have served irrigation needs well in the past, they are now threatened by high costs of labor for construction and maintenance, and by the encroachment of tubewells which lower the water tables on which the karez systems depend. Possible methods for improving karez performance and needs for research are discussed.  相似文献   
997.
ABSTRACT: Geographic Information Systems (GIS) have been successfully integrated with distributed parameter, single-event, water quality models such as AGNPS (AGricultural NonPoint Source) and ANSWERS (Areal Nonpoint Source Watershed Environmental Response Simulation). These linkages proved to be an effective way to collect, manipulate, visualize, and analyze the input and output date of water quality models. However, for continuous-time, basin large-scale water quality models, collecting and manipulating the input data are more time-consuming and cumbersome due to the method of disaggregation (subdivisions are based on topographic boundaries). SWAT (Soil and Water Assessment Tool), a basin-scale water quality model, was integrated with a GIS to extract input data for modeling a basin. This paper discusses the detailed development of the integration of the SWAT water quality model with GRASS (Geographic Resources Analysis Support System) GIS, along with an application and advantages. The integrated system was applied to simulated a 114 sq. km upper portion of the Seco Creek Basin by subdividing it into 37 subbasins. The average monthly predicted streamflw is in agreement with measured monthly streamflw values.  相似文献   
998.
ABSTRACT: Geographic Information Systems (GIS) are being used increasingly as a method of preparing, analyzing, and displaying data for watershed analysis and modeling. Although GIS technology is a powerful tool for integrating and analyzing watershed characteristics, the initial preparation of the necessary database is often a time consuming and costly endeavor. This demonstration project assesses the viability of creating a cost-effective spatial database for urban stormwater modeling from existing digital and hard-copy data sources. The GIS was used to provide input parameters to the Source Loading and Management Model (SLANM), an empirical urban stormwater quality model. Land use characteristics, drainage boundaries, and soils information were geocoded and referenced to a base data layer consisting of transportation features. GIS overlay and data manipulation capabilities were utilized to preprocess the input data for the model. Model output was analyzed through postprocessing by GIS, and results were compared to a similar recent modeling study of the same watershed. The project, undertaken for a small urban watershed located in Plymouth, Minnesota, successfully demonstrates that the use of GIS in stormwater management can allow even small communities to reap the benefits of stormwater quality modeling.  相似文献   
999.
One of the major changes in flash-flood mitigation in the past decade is the number of communities that have implemented warning systems. The authors conducted a survey of 18 early-warning systems in the United States developed by communities or regions to provide protection against flash floods or dam failures. Problems revealed by the study included the following: equipment malfunctions, inadequate maintenance funding, inconsistent levels of protection and expenditure, inconsistent levels of expectations and formalization, varying levels of local commitment to the systems, underemphasis on response capability, and a tendency to over-rely on warning systems. The study also revealed some unanticipated benefits experienced by the survey communities: the warning systems serve as valuable data collection tools, a great deal of interagency cooperation has been demonstrated, and warning systems offer increased alternatives to structural modification projects. The interjurisdictional nature of drainage basins, the evolving roles of the various federal agencies involved in flood mitigation, and the lack of governmental standards of operations for flood warning systems are issues that must be considered as communities make decisions regarding the adoption of warning systems. The record on these systems is too short for a precise assessment of how successful they are; however, results of the study indicate that if the goal of reducing loss of life and property from flooding is to be achieved, warning systems must be only one part of a comprehensive flood loss reduction program.  相似文献   
1000.
ABSTRACT: Given limited available data and the present state of knowledge on the social aspects of irrigation, there is a need to develop new quantitative methods to measure water management performance in large-scale systems. A qualitative response framework is adapted to formulate a dynamic logit model of weekly field water adequacy and quantify indirectly farmer water utilization. Model parameters are estimated in a weighted least-squares regression using four seasons of data from a Philippine canal system. Estimated coefficients and independent model forecasts indicate greater effective use of rainfall than irrigation in sustaining high levels of water adequacy during the rainy season. Irrigation utilization is two times higher in the dry season, while system location has a much smaller but still significant impact. Utilization rates for both rain and irrigation showed considerable responsiveness to the prevailing scarcity of water. The qualitative response approach is well suited to the aggregated data available for large-scale systems, and allows advances in modeling dynamic water management behavior. Formal evaluation of the model will require further empirical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号