首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2079篇
  免费   53篇
  国内免费   117篇
安全科学   107篇
废物处理   24篇
环保管理   343篇
综合类   593篇
基础理论   277篇
环境理论   2篇
污染及防治   493篇
评价与监测   285篇
社会与环境   84篇
灾害及防治   41篇
  2024年   3篇
  2023年   18篇
  2022年   25篇
  2021年   38篇
  2020年   68篇
  2019年   36篇
  2018年   58篇
  2017年   38篇
  2016年   56篇
  2015年   66篇
  2014年   71篇
  2013年   143篇
  2012年   112篇
  2011年   222篇
  2010年   130篇
  2009年   199篇
  2008年   180篇
  2007年   152篇
  2006年   104篇
  2005年   65篇
  2004年   50篇
  2003年   62篇
  2002年   43篇
  2001年   35篇
  2000年   45篇
  1999年   24篇
  1998年   25篇
  1997年   27篇
  1996年   22篇
  1995年   15篇
  1994年   15篇
  1993年   32篇
  1992年   20篇
  1991年   6篇
  1990年   9篇
  1989年   4篇
  1988年   6篇
  1987年   3篇
  1986年   6篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有2249条查询结果,搜索用时 31 毫秒
91.
研究公众对社会减灾能力及灾害风险的认识,有助于从公众视角揭示风险潜在因素,不仅是进行风险沟通的必备环节,还可以为开展有效的减灾宣传教育、提高公众减灾意识提供决策依据。通过社会调查(221份样本)和统计分析方法,比较了江西九江、宜春公众对于社会减灾能力的信任及水灾风险感知。结果表明,公众对于社会减灾能力基本持信任态度,信任度高低排序为:灾害监测预报>政府应急>防灾工程>预警传播,其中宜春公众的信任度较高;公众对于水灾的风险感知较弱,尤其是宜春公众认为水灾发生、受灾的可能性很小;公众的信任与对区域减灾能力的了解无关,主要是受到受灾经历(受灾次数、灾情损失、灾后救援)的影响,即区域本底灾害风险的高低导致公众认知的差异,风险较高区域(九江)的公众具有更为明确的降低风险的行为倾向及意愿。  相似文献   
92.
As one of China’s great metropolises, Taiyuan is affected by heavy chemical industry and manufacture of chemical products, and faces pollution from polychlorinated biphenyls (PCBs). Therefore, this study was conducted to determine the PCB concentrations in various environmental media in Taiyuan. We collected 15 soil samples, 34 respirable particulate matter (PM) samples (17 of PM2.5 and 17 of PM10) from urban areas of Taiyuan, and measured a total of 144 PCB congeners (including some coeluting PCB congeners). The total PCB concentrations were 51–4.7 × 103 pg g−1 in soil, 27–1.4 × 102 pg m−3 in PM2.5 and 16–1.9 × 102 pg m−3 in PM10. Of the PCB homologues, the dominant PCBs detected in the various media were all tri-CBs. Soil was relatively the most polluted media. Furthermore, principal-component analysis revealed that the major PCB source in Taiyuan may be associated with the main commercial PCB through long-range transmission. Toxic equivalency (TEQ) concentrations (based on ten dioxin-like PCBs) ranged from N.D. to 5.9 × 10−3 pg-WHO TEQ g−1 in soil, 2.0 × 10−4–3.4 × 10−3 pg-WHO TEQ m−3 and 1.0 × 10−4–1.2 × 10−3 pg-WHO TEQ m−3 in PM2.5 and PM10, respectively. In previous studies, PCBs were not a severe component of contaminant in Taiyuan; however, this study suggested there is a potential threat of human exposure to PCBs for residents of Taiyuan.  相似文献   
93.
Concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) in soil, moss and reindeer dung collected at Ny-Ålesund of the Arctic were measured to investigate their accumulation trends and distribution in the three compartments. Compared with the other regions, the proportions of 2 + 3 ring PAHs to the total PAHs were higher, whereas the proportions of 5 + 6 ring PAHs were lower in the three compartments at Ny-Ålesund. Significant log/log-linear relationship was observed between the sub-cooled liquid vapor pressure and the soil/moss quotient (QSM). The relation was similar to the relationship between the gas/particle partition coefficient (KP) and of PAHs, implying QSM would be a “mirror image” of KP. Excellent log/log-linear relationships were observed between QSM and KOA as well as between the moss/dung quotient (QMD) and KOW. The results presented here indicate the physicochemical properties are suitable for characterizing the distribution of PAHs in soil, moss and reindeer dung.  相似文献   
94.
Binding of two model polycyclic aromatic hydrocarbons (PAHs), phenanthrene and pyrene, by humic acids (HAs) isolated from an organic substrate at different stages of composting and a soil was investigated using a batch fluorescence quenching method and the modified Freundlich model. With respect to soil HA, the organic substrate HA fractions were characterized by larger binding affinities for both phenanthrene and pyrene. Further, isotherm deviation from linearity was larger for soil HA than for organic substrate HAs, indicating a larger heterogeneity of binding sites in the former. The composting process decreased the binding affinity and increased the heterogeneity of binding sites of HAs. The changes undergone by the HA fraction during composting may be expected to contribute to facilitate microbial accessibility to PAHs. The results obtained also suggest that bioremediation of PAH-contaminated soils with matured compost, rather than with fresh organic amendments, may result in faster and more effective cleanup.  相似文献   
95.
Dissipation kinetics of mesotrione, a new triketone herbicide, sprayed on soil from Limagne (Puy-de-Dôme, France) showed that the soil microflora were able to biotransform it.Bacteria from this soil were cultured in mineral salt solution supplemented with mesotrione as sole source of carbon for the isolation of mesotrione-degrading bacteria. The bacterial community structure of the enrichment cultures was analyzed by temporal temperature gradient gel electrophoresis (TTGE). The TTGE fingerprints revealed that mesotrione had an impact on bacterial community structure only at its highest concentrations and showed mesotrione-sensitive and mesotrione-adapted strains. Two adapted strains, identified as Bacillus sp. and Arthrobacter sp., were isolated by colony hybridization methods.Biodegradation assays showed that only the Bacillus sp. strain was able to completely and rapidly biotransform mesotrione. Among several metabolites formed, 2-amino-4-methylsulfonylbenzoic acid (AMBA) accumulated in the medium. Although sulcotrione has a chemical structure closely resembling that of mesotrione, the isolates were unable to degrade it.  相似文献   
96.
The physico-chemical absorption characteristics of ammonium-N for 10 soils from 5 profiles in York, UK, show its high potential mobility in N deposition-impacted, unfertilized, permanent grassland soils. Substantial proportions of ammonium-N inputs were retained in the solution phase, indicating that ammonium translocation plays an important role in the N cycling in, and losses from, such soils. This conclusion was further supported by measuring the ammonium-N leaching from intact plant/soil microcosms. The ammonium-N absorption characteristics apparently varied with soil pH, depth and soil texture. It was concluded for the most acid soils especially that ammonium-N leached from litter horizons could be seriously limiting the capacity of underlying soils to retain ammonium. Contrary to common opinion, more attention therefore needs to be paid to ammonium leaching and its potential role in biogeochemical N cycling in semi-natural soil systems subject to atmospheric pollution.  相似文献   
97.
Chlordecone was applied between 1972 and 1993 in banana fields of the French West Indies. This resulted in long-term pollution of soils and contamination of waters, aquatic biota, and crops. To assess pollution level and duration according to soil type, WISORCH, a leaching model based on first-order desorption kinetics, was developed and run. Its input parameters are soil organic carbon content (SOC) and SOC/water partitioning coefficient (Koc). It accounts for current chlordecone soil contents and drainage water concentrations. The model was valid for andosol, which indicates that neither physico-chemical nor microbial degradation occurred. Dilution by previous deep tillages makes soil scrapping unrealistic. Lixiviation appeared the main way to reduce pollution. Besides the SOC and rainfall increases, Koc increased from nitisol to ferralsol and then andosol while lixiviation efficiency decreased. Consequently, pollution is bound to last for several decades for nitisol, centuries for ferralsol, and half a millennium for andosol.  相似文献   
98.
Organic wastes are considered to be a source for the potentially pathogenic microorganisms found in surface and sub-surface water resources. Following their release from the organic waste matrix, bacteria often infiltrate into soil and may be transported to significant depths contaminating aquifers. We investigated the influence of soil texture and structure and most importantly the organic waste properties on the transport and filtration coefficients of Escherichia coli and total bacteria in undisturbed soil columns. Intact soil columns (diameter 16 cm and height 25 cm) were collected from two soils: sandy clay loam (SCL) and loamy sand (LS) in Hamadan, western Iran. The cores were amended with cow manure, poultry manure and sewage sludge at a rate of 10 Mg ha(-1) (dry basis). The amended soil cores were leached at a steady-state flux of 4.8 cm h(-1) (i.e. 0.12 of saturated hydraulic conductivity of the SCL) to a total volume of up to 4 times the pore volume of the columns. The influent (C(0)) and effluent (C) were sampled at similar time intervals during the experiments and bacterial concentrations were measured by the plate count method. Cumulative numbers of the leached bacteria, filtration coefficient (lambda(f)), and relative adsorption index (S(R)) were calculated. The preferential pathways and stable structure of the SCL facilitated the rapid transport and early appearance of the bacteria in the effluent. The LS filtered more bacteria when compared with the SCL. The effluent contamination of poultry manure-treated columns was greater than the cow manure- and sewage sludge-treated ones. The difference between cow manure and sewage sludge was negligible. The lambda(f) and S(R) values for E. coli and total bacteria were greater in the LS than in the SCL. This indicates a predominant role for the physical pore-obstruction filtration mechanisms as present in the poorly structured LS vs. the retention at adsorptive sites (chemical filtration) more likely in the better structured SCL. While the results confirmed the significant role of soil structure and preferential (macroporous) pathways, manure type was proven to have a major role in determining the maximum penetration risk of bacteria by governing filtration of bacteria. Thus while the numbers of bacteria in waste may be of significance for shallow aquifers, the type of waste may determine the risk for microbial contamination of deep aquifers.  相似文献   
99.
Recreational uses of unsurfaced trails inevitably result in their degradation, with the type and extent of resource impact influenced by factors such as soil texture, topography, climate, trail design and maintenance, and type and amount of use. Of particular concern, the loss of soil through erosion is generally considered a significant and irreversible form of trail impact. This research investigated the influence of several use-related, environmental, and managerial factors on soil loss on recreational trails and roads at Big South Fork National River and Recreation Area, a unit of the U.S. National Park Service. Regression modeling revealed that trail position, trail slope alignment angle, grade, water drainage, and type of use are significant determinants of soil loss. The introduction of individual and groups of variables into a series of regression models provides improved understanding and insights regarding the relative influence of these variables, informing the selection of more effective trail management actions. Study results suggest that trail erosion can be minimized by avoiding “fall-line” alignments, steep grades, and valley-bottom alignments near streams, installing and maintaining adequate densities of tread drainage features, applying gravel to harden treads, and reducing horse and all-terrain vehicle use or restricting them to more resistant routes.  相似文献   
100.
This study addressed the hydrological processes of runoff and sedimentation, soil moisture content, and properties under the effect of different water harvesting techniques (treatments). The study was conducted at three sites, representing environmental condition gradients, located in the southern part of the West Bank. For each treatment, the study evaluated soil chemical and physical properties, soil moisture at 30 cm depth, surface runoff and sedimentation at each site. Results showed that runoff is reduced by 65–85% and sedimentation by 58–69% in stone terraces and semi-circle bunds compared to the control at the semi-humid site. In addition, stone terraces and contour ridges significantly reduced the amount of total runoff by 80% and 73%, respectively, at the arid site. Soil moisture content was significantly increased by water harvesting techniques compared to the control in all treatments at the three study sites. In addition, the difference between the control and the water harvesting structures were higher in the arid and semi-arid areas than in the semi-humid area. Soil and water conservation, via utilization of water harvesting structures, is an effective principle for reducing the negative impact of high runoff intensity and subsequently increasing soil moisture storage from rainfall. Jessour systems in the valley and stone terraces were effective in increasing soil moisture storage, prolonging the growing season for natural vegetation, and decreasing the amount of supplemental irrigation required for growing fruit trees.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号