首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   2篇
  国内免费   32篇
安全科学   2篇
废物处理   4篇
环保管理   4篇
综合类   61篇
基础理论   30篇
污染及防治   17篇
评价与监测   4篇
社会与环境   1篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   6篇
  2015年   3篇
  2014年   3篇
  2013年   20篇
  2012年   5篇
  2011年   9篇
  2010年   6篇
  2009年   10篇
  2008年   3篇
  2007年   2篇
  2006年   5篇
  2005年   5篇
  2004年   4篇
  2003年   3篇
  2002年   5篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有123条查询结果,搜索用时 170 毫秒
101.
Abstract

Most modern pesticides are expensive. Application of excessive dosage rates is likely to cause undesirable biological side‐effects and is economically wasteful. Non‐uniform distribution of the spray cloud, or application at the wrong time, may result in failure to control the pest. It is the responsibility of the field operator to acquire sufficient knowledge and skill to ensure proper use of the control agents, to increase efficiency of their usage and to reduce unwanted side‐effects. To achieve this goal, he must take into consideration the various physical factors that govern field performance of pesticides.

A simple relationship exists between the spray volume and emission rate used, and droplet size produced. The use of extremely low spray volumes (i.e., those less than 2.0 litre per ha) for forest insect control in Canada, as opposed to higher volumes used in agriculture, necessitates the release of fine droplets (ranging from 20 to 70 μm in diameter) to obtain adequate coverage of the target area. These droplets take a long time to sediment downwards, evaporate in‐flight, become smaller in size and/or form powdery residues, thus contributing to off‐target drift and impaired droplet adhesion to target surfaces. Physical factors such as rain washing, degradation by sunlight and erosion by wind also influence the longevity of pesticide deposits on foliage which is crucial during the critical period of pest control.

Factors affecting the mode of entry into insects are related to the type of ingredients used in formulation. If a pesticide acts via crawling contact, formulations which would provide surface deposits would be more beneficial than emulsions or oil‐based mixes which tend to undergo penetration into foliar cuticle. Physical factors that affect field performance of a pesticide tank mix are related to phase separation and ‘breakdown of emulsions’ in the application equipment; ‘agglomeration and caking’ of wettable powder dispersions at the bottom of the tank; impaired flow behaviour of highly viscous formulations; and coarse atomization of high‐viscosity tank mixes leading to poor target cover.  相似文献   
102.
This study aimed to explore a new degradation method - photocatalysis technology to polish membrane bioreactor (MBR) effluent, using 2,6-di-tert-butylphenol (2,6-DTBP) as a model soluble microbial product (SMP). 2,6-DTBP is one of the predominant SMPs in MBR effluent, which is refractory and difficult to biodegrade. This study developed a novel carboxylated graphene oxide/titanium dioxide/silver (GO-COOH/TiO2/Ag) nanocomposite to photodegrade 2,6-DTBP. GO-COOH/TiO2/Ag was successfully synthesized, using l-cysteine as the linker bonding TiO2/Ag to GO-COOH. The structural, morphological and optical properties of the GO-COOH/TiO2/Ag nanocomposite were characterized using various techniques. Owing to synergistic effects, the GO-COOH/TiO2/Ag nanocomposite exhibited enhanced photocatalytic degradation performance under solar light irradiation when compared to TiO2, Ag and GO-COOH. To remove 25 mg/L 2,6-DTBP, the reaction time for GO-COOH/TiO2/Ag was only 30 min, faster than the 90 min required for pure TiO2 or Ag. In addition, the 200 mg/L GO-COOH/TiO2/Ag nanocomposite aqueous solution showed the best performance under solar light, with 99% removal of 2,6-DTBP. This enhanced capability is likely due to the surface plasmon resonance (SPR) effect contributed by Ag nanoparticles (NPs) doped onto the TiO2. In addition, GO-COOH had a high effective surface area, which assisted in degrading the 2,6-DTBP through improved adsorption. The stability study showed that the photocatalytic activity of the GO-COOH/TiO2/Ag was stable enough for recycling multiple times. The effective degradation performance and excellent stability demonstrates that the GO-COOH/TiO2/Ag nanocomposite can be a promising photocatalyst in the field of effluent SMP photodegradation, which solves the problem of the difficult biodegradation of highly toxic 2,6-DTBP.  相似文献   
103.
原设计污水处理工艺除油效果不理想,将曝气浮选法改为溶气气浮浮选法,通过对污水静置沉降、斜板隔油、溶气气浮、果壳过滤、CSF过滤等各单元处理,及污水中的油分分析,特别是对斜板隔油、溶气气浮单元加入药剂前后的除油效果进行对比,从结果可知,处理后的污水中油分含量低于10mg/L,实现了达标排放。  相似文献   
104.
Concentration of pregnancy-specific β1-glycoprotein (SP1) was studied in second and third trimester amniotic fluid from pregnancies with various fetal developmental disorders. The material consisted of 26 cases with chromosomal disorders and 19 cases with nonchromosomal fetal malformations. The SP1 concentration was elevated in two cases of Meckel's syndrome (mean + 2.7–4.0 S.D.) as well as in one case of fetal triploidy (mean + 22 S.D.), while it was normal in all other 14 different fetal disorders.  相似文献   
105.
作物根系对干旱胁迫逆境的适应性研究进展   总被引:11,自引:0,他引:11  
主要就作物根系的形态性状、根系提水作用、生理代谢、根系细胞壁蛋白及其生长性能与干旱胁迫间的关系作了综述;指出应加强对干旱逆境下根系发育及根系生长性状变化上的遗传机理研究。  相似文献   
106.
Amniotic fluid levels of pregnancy-specific β1-glycoprotein (SP1) were elevated in four pregnancies with Meckel's syndrome at 16 and 26 weeks, and the levels of hCG were also elevated in three out of four cases. These findings suggest a potential new application of SP1 measurement for prenatal diagnosis.  相似文献   
107.
A two-phase anaerobic reactor fed with glucose substrate (3 g chemical oxygen demand (COD)/L) was used to investigate the effects of toxic metals on the degradation of organics and the soluble microbial product (SMP) formation. Low concentrations of Ni(II) (5 and 10 mg/L) promoted the acid phase, whereas high concentrations (15, 20, and 25 mg/L) exhibited an inhibitory effect on, but did not alter the fermentative method, which mainly involved the fermentation of propionic acid. The methanogenic microorganism exhibited a strong capability adapting constantly increased Ni(II) levels. The acid phase was an accumulation stage of SMP. In the absence of Ni(II), the high-molecular-weight material in the effluent SMP mainly contained polysaccharide, tryptophan, and casein. Methanogens metabolized most of the polysaccharide, the whole tryptophan content, and part of the casein, leading to the presence of humic acid and protein in effluent. After Ni(II) dosage, the protein and polysaccharide of the acid phase increased, and tryptophan changed, while casein remained stable. More protein than polysaccharide was produced, suggesting the prominent function of protein when addressing the negative effect of toxic metals. The analysis of DNA confirmed the change of bacterial activity.  相似文献   
108.
土壤和底质中砷形态分析前处理技术   总被引:2,自引:0,他引:2  
利用可溶性砷(包括有机砷、砷的无机含氧化合物)和硫化砷的特性进行砷的形态分析。在2mol/L盐酸中提取可溶性砷,与硫化砷进行分离,分别测定总砷和可溶性砷后差值为硫化砷,在9mol/L硫酸-碘化钾溶液中用苯萃取砷的无机含氧化合物与有机砷进行分离,可分别测定有机砷的砷的无机含氧化合物。  相似文献   
109.
To understand the mechanism underlying organophosphate pesticide toxicity, cyanobacterium Anabaena PCC 7120 was subjected to varied concentrations (0, 5, 10, 20 and 30 mg L?1) of profenofos and the effects were investigated in terms of changes in cellular physiology, genomic template stability and protein expression pattern. The supplementation of profenofos reduced the growth, total pigment content and photosynthetic efficiency of the test organism in a dose dependent manner with maximum toxic effect at 30 mg L?1. The high fluorescence intensity of 2′, 7′ –dichlorofluorescin diacetate and increased production of malondialdehyde confirmed the prevalence of acute oxidative stress condition inside the cells of the cyanobacterium. Rapid amplified polymorphic DNA (RAPD) fingerprinting and SDS-PAGE analyses showed a significant alteration in the banding patterns of DNA and proteins respectively. A marked increase in superoxide dismutase, catalase, peroxidase activity and a concomitant reduction in glutathione content indicated their possible role in supporting the growth of Anabaena 7120 up to 20 mg L?1. These findings suggest that the uncontrolled use of profenofos in the agricultural fields may not only lead to the destruction of the cyanobacterial population, but it would also disturb the nutrient dynamics and energy flow.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号