首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   337篇
  免费   11篇
  国内免费   99篇
安全科学   17篇
废物处理   4篇
环保管理   23篇
综合类   225篇
基础理论   19篇
污染及防治   69篇
评价与监测   80篇
社会与环境   8篇
灾害及防治   2篇
  2024年   1篇
  2023年   19篇
  2022年   26篇
  2021年   24篇
  2020年   23篇
  2019年   12篇
  2018年   13篇
  2017年   15篇
  2016年   20篇
  2015年   30篇
  2014年   14篇
  2013年   15篇
  2012年   20篇
  2011年   28篇
  2010年   16篇
  2009年   25篇
  2008年   22篇
  2007年   13篇
  2006年   24篇
  2005年   12篇
  2004年   5篇
  2003年   4篇
  2002年   13篇
  2001年   10篇
  2000年   6篇
  1999年   10篇
  1998年   7篇
  1997年   4篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   4篇
  1987年   1篇
  1983年   1篇
  1978年   1篇
排序方式: 共有447条查询结果,搜索用时 15 毫秒
1.
哈尔滨市功能区噪声变化趋势分析   总被引:1,自引:0,他引:1  
根据哈尔滨市四类功能区噪声监测数据,对哈尔滨市功能区噪声变化趋势进行了分析,得出1、3、4类功能区噪声Leq平均值均较稳定,2类功能区遍布广泛,声源复杂,突发噪声较频繁。  相似文献   
2.
太湖流域面源污染控制对策研究   总被引:12,自引:0,他引:12  
近年来.随着点源污染得到逐步治理,面源污染已成为水体富营养化的主要污染源,本文介绍了太湖流域面源 污染的现状,分析了其构成,列举了国内外目前治理面源污染的一些措施,并就太湖流域面源污染的特点提出了一些控制 治理对策。  相似文献   
3.
针对间接冷却水的特点和核算其污染当量数过程中存在的问题,阐述了间接冷却水的界定,水源水的采样监测技术,本底值的扣除以及超标排放的判别等环节的技术要求和注意事项,并就与之密切相关的几个问题展开了讨论,为核算间接冷却水当量数提供了一定的参考依据,建议增加水湿排放指标,以切实控制间接冷却水造成的主要污染-热污染。  相似文献   
4.
“三江”河源地区主要河流的水资源特征   总被引:3,自引:0,他引:3  
该文在长江、黄河、澜沧江河源地区水资源特征分析研究的基础上,重点对河源地区主要河流的水化学特征进行了较为全面的研究。分析了各干、支流河水的主要离子成分、水化学类型、河水的矿化度、总硬度、总碱度以及河水的主要微量元素组成。并根据中国生活饮用水水质标准和工农业生产用水标准的要求,对“三江”河源地区主要河流的水质状况进行了评价。  相似文献   
5.
Based on the online and membrane sampling data of Yuncheng from January 1st to February 12th, 2020, the formation mechanism of haze under the dual influence of Spring Festival and COVID-19 (Corona Virus Disease) was analyzed. Atmospheric capacity, chemical composition, secondary transformation, source apportionment, backward trajectory, pollution space and enterprise distribution were studied. Low wind speed, high humidity and small atmospheric capacity inhibited the diffusion of air pollutants. Four severe pollution processes occurred during the period, and the pollution degree was the highest around the Spring Festival. In light, medium and heavy pollution periods, the proportion of SNA (SO42−, NO3 and NH4+) was 59.6%, 56.0% and 54.9%, respectively, which was the largest components of PM2.5; the [NO3]/[SO42−] ratio was 2.1, 1.5 and 1.7, respectively, indicating that coal source had a great influence; the changes of NOR (nitrogen oxidation ratio, 0.44, 0.45, 0.61) and SOR (sulphur oxidation ratio, 0.40, 0.49, 0.65) indicated the accumulation of secondary aerosols with increasing pollution. The coal combustion, motor vehicle, secondary inorganic sources and industrial sources contributed 36.8%, 26.59%, 11.84% and 8.02% to PM2.5 masses, respectively. Backward trajectory showed that the influence from the east was greater during the Spring Festival, and the pollutants from the eastern air mass were higher, which would aggravate the pollution. Meteorological and Spring Festival had a great impact on heavy pollution weather. Although some work could not operate due to the impact of the COVID-19 epidemic, the emission of pollutants did not reduce much.  相似文献   
6.
Polycyclic aromatic hydrocarbons(PAHs) and their nitrated derivatives(NPAHs) attract continuous attention due to their outstanding carcinogenicity and mutagenicity. In order to investigate the diurnal variations, sources, formation mechanism, and health risk assessment of them in heating season, particulate matter(PM) were collected in Beijing urban area from December 26, 2017 to January 17, 2018. PAHs and NPAHs in PM were quantitatively analyzed via gas chromatography-mass spectrometry(GC-MS). ...  相似文献   
7.
在2010~2012年进行的上海某水源地水质监测资料的基础上,应用纳氏试剂分光光度法等分析方法研究该水源地2011年1~10月总氮、氨氮、硝酸盐氮、亚硝酸盐氮等不同形态的氮素在水体中的空间分布规律及时间变化规律。并就其氮的来源、迁移转化机理和对氮的迁移转化有较大影响的因素进行研究和分析,得出该水库水体中各种形态氮以硝酸盐氮为主,平均占总氮的71.6%,氨氮及亚硝酸盐氮各占总氮的4.39%及0.95%;水体中的温度、光照条件、溶解氧、点位位置分布、水深等是影响各氮形态含量与分布的重要环境因子。  相似文献   
8.
PM10 samples were collected from an urban/industrial site nearby Athens, where uncontrolled burning activities occur. PAHs, monocarboxylic, dicarboxylic, hydroxycarboxylic and aromatic acids, tracers from BVOC oxidation, biomass burning tracers and bisphenol A were determined. PAH, monocarboxylic acids, biomass burning tracers and bisphenol A were increased during autumn/winter, while BSOA tracers, dicarboxylic- and hydroxycarboxylic acids during summer. Regarding aromatic acids, different sources and formation mechanisms were indicated as benzoic, phthalic and trimellitic acids were peaked during summer whereas p-toluic, isophthalic and terephthalic were more abundant during autumn/winter. The Benzo[a]pyrene-equivalent carcinogenic power, carcinogenic and mutagenic activities were calculated showing significant (p < 0.05) increases during the colder months. Palmitic, succinic and malic acids were the most abundant monocarboxylic, dicarboxylic and hydrocarboxylic acids during the entire sampling period. Isoprene oxidation was the most significant contributor to BSOA as the isoprene-SOA compounds were two times more abundant than the pinene-SOA (13.4 ± 12.3 and 6.1 ± 2.9 ng/m3, respectively). Ozone has significant impact on the formation of many studied compounds showing significant correlations with: isoprene-SOA (r = 0.77), hydrocarboxylic acids (r = 0.69), pinene-SOA (r = 0.63),dicarboxylic acids (r = 0.58), and the sum of phthalic, benzoic and trimellitic acids (r = 0.44). PCA demonstrated five factors that could explain sources including plastic enriched waste burning (30.8%), oxidation of unsaturated fatty acids (23.0%), vehicle missions and cooking (9.2%), biomass burning (7.7%) and oxidation of VOCs (5.8%). The results highlight the significant contribution of plastic waste uncontrolled burning to the overall air quality degradation.  相似文献   
9.
The chemical characteristics, oxidative potential, and sources of PM2.5 were analyzed at the urban sites of Lahore and Peshawar, Pakistan in February 2019. Carbonaceous species, water soluble ions, and metal elements were measured to investigate the chemical composition and sources of PM2.5. The dithiothreitol (DTT) consumption rate was measured to evaluate the oxidative potential of PM2.5. Both cities showed a high exposure risk of PM2.5 regarding its oxidative potential (DTTv). Carbonaceous and some of the elemental species of PM2.5 correlated well with DTTv in both Lahore and Peshawar. Besides, the DTTv of PM2.5 in Lahore showed significant positive correlation with most of the measured water soluble ions, however, ions were DTT-inactive in Peshawar. Due to the higher proportions of carbonaceous species and metal elements, Peshawar showed higher mass-normalized DTT activity of PM2.5 compared to Lahore although the average PM2.5 concentration in Peshawar was lower. The high concentrations of toxic metals also posed serious non-carcinogenic and carcinogenic risks to the residents of both cities. Principle component analysis coupled with multiple linear regression was applied to investigate different source contributions to PM2.5 and its oxidative potential. Mixed sources of traffic and road dust resuspension and coal combustion, direct vehicle emission, and biomass burning and formation of secondary aerosol were identified as the major sources of PM2.5 in both cities. The findings of this study provide important data for evaluation of the potential health risks of PM2.5 and for formulation of efficient control strategies in major cities of Pakistan.  相似文献   
10.
Fresh water microplastic pollution is of pressing concern globally, but its distribution and sources in reservoirs are poorly documented. Danjiangkou Reservoir is the second largest reservoir in China and is divided into the Han Reservoir and Dan Reservoir. In this work, microplastic abundances and morphological characteristics of the reservoir were investigated. The microplastic abundance of 15 main tributaries of the reservoir was also measured. The vertical distribution (in water column and sediment), horizontal distribution (in Han Reservoir and Dan Reservoir) and source of microplastics were analyzed. Microplastics accumulated in the middle layer of the reservoir, and the size and color of the microplastic particles changed from the surface to the bottom, which implies that surveys of surface water are not enough to determine the microplastic contamination for deep water reservoirs. In the surface water, the microplastic abundance in the Han Reservoir was lower than that in the Dan Reservoir (p < 0.05), but microplastic abundance did not differ significantly in the intermediate and bottom water. Tributaries were one of the main sources of microplastics for Han Reservoir but not for Dan Reservoir. Agricultural cultivation in the hydro-fluctuation belt might be an important source of microplastics in the Dan Reservoir, which should be given additional attention. The results of this study can provide valuable information for developing microplastic sampling strategies in deep water reservoirs. Further studies are recommended to investigate the process through which microplastics in the hydro-fluctuation belt enter the reservoir and the sinking behavior of microplastics in the reservoir.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号