首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   436篇
  免费   10篇
  国内免费   23篇
安全科学   1篇
废物处理   2篇
环保管理   217篇
综合类   66篇
基础理论   77篇
污染及防治   35篇
评价与监测   32篇
社会与环境   39篇
  2023年   6篇
  2022年   5篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   5篇
  2016年   8篇
  2015年   8篇
  2014年   9篇
  2013年   11篇
  2012年   11篇
  2011年   23篇
  2010年   13篇
  2009年   26篇
  2008年   31篇
  2007年   27篇
  2006年   31篇
  2005年   15篇
  2004年   20篇
  2003年   17篇
  2002年   32篇
  2001年   30篇
  2000年   12篇
  1999年   15篇
  1998年   9篇
  1997年   12篇
  1996年   10篇
  1995年   14篇
  1994年   8篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1990年   12篇
  1989年   2篇
  1988年   3篇
  1987年   8篇
  1986年   5篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1978年   2篇
  1977年   1篇
  1968年   1篇
排序方式: 共有469条查询结果,搜索用时 46 毫秒
201.
Continuing permafrost degradation is increasing the risk of mercury(Hg) exposure in the permafrost regions on the Qinghai-Tibetan Plateau(QTP), but related studies are still limited, especially the ones on the detailed Hg migration processes in permafrost. The vertical distribution characteristics of soil Hg were investigated in three ecosystems in the Beiluhe area on the QTP, and its influencing factors and formation mechanism were investigated. The results indicate that the total soil mercury(...  相似文献   
202.
Insights into declines in ecosystem resilience and their causes and effects can inform preemptive action to avoid ecosystem collapse and loss of biodiversity, ecosystem services, and human well-being. Empirical studies of ecosystem collapse are rare and hampered by ecosystem complexity, nonlinear and lagged responses, and interactions across scales. We investigated how an anthropogenic stressor could diminish ecosystem resilience to a recurring perturbation by altering a critical ecosystem driver. We studied groundwater-dependent, peat-accumulating, fire-prone wetlands known as upland swamps in southeastern Australia. We hypothesized that underground mining (stressor) reduces resilience of these wetlands to landscape fires (perturbation) by diminishing groundwater, a key ecosystem driver. We monitored soil moisture as an indicator of ecosystem resilience during and after underground mining. After landscape fire, we compared responses of multiple state variables representing ecosystem structure, composition, and function in swamps within the mining footprint with unmined reference swamps. Soil moisture declined without recovery in swamps with mine subsidence (i.e., undermined), but was maintained in reference swamps over 8 years (effect size 1.8). Relative to burned reference swamps, burned undermined swamps showed greater loss of peat via substrate combustion; reduced cover, height, and biomass of regenerating vegetation; reduced postfire plant species richness and abundance; altered plant species composition; increased mortality rates of woody plants; reduced postfire seedling recruitment; and extirpation of a hydrophilic animal. Undermined swamps therefore showed strong symptoms of postfire ecosystem collapse, whereas reference swamps regenerated vigorously. We found that an anthropogenic stressor diminished the resilience of an ecosystem to recurring perturbations, predisposing it to collapse. Avoidance of ecosystem collapse hinges on early diagnosis of mechanisms and preventative risk reduction. It may be possible to delay or ameliorate symptoms of collapse or to restore resilience, but the latter appears unlikely in our study system due to fundamental alteration of a critical ecosystem driver. Efectos de las interacciones entre los estresantes antropogénicos y las perturbaciones recurrentes sobre la resiliencia y el colapso de los ecosistemas  相似文献   
203.
Funding for species conservation is insufficient to meet the current challenges facing global biodiversity, yet many programs use expensive single‐species recovery actions and neglect broader management that addresses threatening processes. Arid Australia has the world's worst modern mammalian extinction record, largely attributable to competition from introduced herbivores, particularly European rabbits (Oryctolagus cuniculus) and predation by feral cats (Felis catus) and foxes (Vulpes vulpes). The biological control agent rabbit hemorrhagic disease virus (RHDV) was introduced to Australia in 1995 and resulted in dramatic, widespread rabbit suppression. We compared the area of occupancy and extent of occurrence of 4 extant species of small mammals before and after RHDV outbreak, relative to rainfall, sampling effort, and rabbit and predator populations. Despite low rainfall during the first 14 years after RHDV, 2 native rodents listed by the International Union for Conservation of Nature (IUCN), the dusky hopping‐mouse (Notomys fuscus) and plains mouse (Pseudomys australis), increased their extent of occurrence by 241–365%. A threatened marsupial micropredator, the crest‐tailed mulgara (Dasycercus cristicauda), underwent a 70‐fold increase in extent of occurrence and a 20‐fold increase in area of occupancy. Both bottom‐up and top‐down trophic effects were attributed to RHDV, namely decreased competition for food resources and declines in rabbit‐dependent predators. Based on these sustained increases, these 3 previously threatened species now qualify for threat‐category downgrading on the IUCN Red List. These recoveries are on a scale rarely documented in mammals and give impetus to programs aimed at targeted use of RHDV in Australia, rather than simply employing top‐down threat‐based management of arid ecosystems. Conservation programs that take big‐picture approaches to addressing threatening processes over large spatial scales should be prioritized to maximize return from scarce conservation funding. Further, these should be coupled with long‐term ecological monitoring, a critical tool in detecting and understanding complex ecosystem change.  相似文献   
204.
An emergy evaluation was carried out to assess the carrying capacity of a small, uninhabited island (Woosedo) off the southwestern coast of Korea. The sea area within 1 km from the high tide level of the island was included in the evaluation. The total environmental emergy input to Woosedo was 1.66E19 sej/yr, with the most emergy contribution from the tidal energy. The land and marine ecosystems of Woosedo contributed 4.97 million Em$ (7600 Em$/ha/yr) to the Korean economy annually. If Woosedo was developed to the national average at the emergy investment ratio of 2.86, its carrying capacity was estimated at 1034 people at the current living standard of Korea. With this population, the island system would not be sustainable with a very low emergy sustainability index of 0.36. At the same living standard used in the developed scenario, the carrying capacity of the island would be 370 people for a sustainable development scenario and 270 people if the renewable emergy were the only source to support the population. The emergy contribution of the marine ecosystem of the island was the major source of support in determining the level of carrying capacity of the island.  相似文献   
205.
秸秆还田对江西农田土壤固碳影响的模拟分析   总被引:3,自引:0,他引:3  
秸秆还田等农田管理措施能有效地增加土壤碳储量,从而有利于减缓大气CO2浓度的上升趋势。论文基于环境政策综合气候模型(EPIC),采用千烟洲生态试验站和鹰潭生态试验站农田监测场长期观测数据,验证和优化了EPIC模型参数,同时利用1990-2010年江西省气象资料以及土壤清查资料,模拟分析了4种秸秆还田(CR)比例情景下2010-2030年江西省水稻田土壤的固碳潜力。研究结果表明,无秸秆还田 (CR0%)和秸秆还田25%(CR25%)两种处理下耕作层土壤有机碳储量分别下降21.3%和6.5%,秸秆还田50%(CR50%)和100%(CR100%)处理下土壤有机碳储量分别增加5.4%和11.9%;相对CR0%情景而言,CR25%、CR50%、CR100% 情景下江西省水稻田土壤总固碳潜力分别为6.43、14.92和25.26 TgC(1 Tg = 106 t)。研究结果表明,通过合理的调控措施,采用保护性耕作(秸秆还田)是提高水稻田土壤固碳能力的一种有效途径。  相似文献   
206.
Lignin and its effects on litter decomposition in forest ecosystems   总被引:1,自引:0,他引:1  
Lignin is a major component of plant litter. In this review, we found lignin comprises a complex class of organic compounds whose concentration differs greatly both between and within plant species. There are many analytical methods for detecting the composition and structure of lignins. As lignins are enormously complex compounds, chemical assay is difficult and different methods vary with the results. Lignin plays a significant role in the carbon cycle, sequestering atmospheric carbon into the living tissues of woody perennial vegetation. It has also great effects on nitrogen dynamics of forest ecosystems as well as other ecological processes. Lignin is one of the most slowly decomposing components of dead vegetation, contributing a major fraction of the material that becomes humus as it decomposes. Lignin is highly correlated with decomposition of litter. Thus, there is evidence that the lignin concentration is a more influential factor than the other chemical concentrations, in determining the rate of leaf litter decomposition of different forest ecosystems. Although a great number of researchers have addressed lignin's role in litter decomposition, still there are many aspects of lignin biogeochemistry that are not known. This lack of information hinders complete amalgam of lignin effects on litter decomposition processes and dynamics of nutrient cycling.  相似文献   
207.
Sustainable use of the planet requires dependable delivery of ecosystem services at a level necessary to meet the needs of humankind. During the last two centuries, particularly in the twentieth century, ecosystems have been fragmented and stressed in a variety of ways, including biotic impoverishment. Self-regulating ecosystems are capable of maintaining nominative structure and function, including normal variability. Those ecosystems incapable of self regulation will require subsidies, which will divert resources from other activities that may also be important to sustainable use of the planet. If ecosystems are not subsidized, the loss of natural capital and ecosystem services will almost certainly impair the quest for sustainable use of the planet. Although most discussions of sustainability reflect an awareness of humankind's dependence on natural systems, ecosystem self regulation has not received an adequate amount of attention.  相似文献   
208.
ABSTRACT

Human activity shapes the levels of anthropogenic pressure that depend on the land management method adopted. This has a fundamental role in the transformation of traditional landscapes. This study focuses on a representative region of the Mediterranean area with the objective to analyse the landscape’s dynamics, to detect the spatial arrangement of class patches, to identify the main agroecosystem characters and to provide a framework to assess ecosystems services. In order to assess land use/land cover changes and landscape persistence, the period between 1960 and 2012 was analysed, taking into consideration the years 1960, 2000 and 2012 using comparable land use maps. Land use and land cover analysis show an urban area growth of 24% during 2000–2012 and of 523% over between 1960 and 2012. The very high levels of land abandonment up to the year 2000 (+7216%) have reversed their trend between 2000 and 2012 (?95%). The orchards showed a relevant increase, particularly after 2000, while the vineyards were linked to the highest value of surface erosion (?74%). The outcomes showed that urban settlements can damage the ecological network with negative effects on the landscape’s environmental sustainability in proximity of significant urban centres. Instead, the ecological network is well preserved and highly associated to the agricultural areas when there is the persistence of many land uses and low urban density, despite the presence of dynamic changes.  相似文献   
209.
冻融对长白山森林土壤碳氮矿化的影响   总被引:1,自引:0,他引:1  
长白山地区秋末春初常常存在冻融过程,冻融过程影响土壤水分分布而改变土壤理化性质。通过室内模拟实验,研究了冻融过程(-20~15℃)对长白山阔叶红松(Pinus koraiensis)林和白桦(Betula platyphylla)林土壤有机碳和氮矿化过程的影响。结果表明,经过3次冻融循环,冻融处理土壤矿化速率显著高于对照处理,但经过多次冻融循环过程,冻融处理抑制土壤有机碳矿化过程,对照处理土壤有机碳矿化速率高于冻融处理(P=0.019)。在培养结束后,冻融处理的阔叶红松林和白桦林土壤无机氮质量分数,分别是对照处理的1.88倍和1.96倍;冻融次数也是影响土壤有机氮矿化的一个重要因素,35次冻融循环后,阔叶红松林和白桦林土壤中无机氮分别提高了2.10倍和2.81倍。冻融循环促进了土壤有机氮的矿化,有利于土壤中有效氮的累积,为春季植物生长提供足够的氮素,但也潜在增加了土壤中无机氮流失的风险。  相似文献   
210.
The landscape ecological risk (LER) in Xiamen City, China, from 1990 to 2030 was studied using an urban land use and land cover change (LUCC) model and LER analysis. The LUCC model was used to predict the LUCC of Xiamen from 2020 to 2030. We analyzed the characteristics of LUCC and landscape pattern changes and, finally, evaluated the effect of rapid LUCC on LER. Of the six landscape types investigated, built-up land and farmland demonstrated the most significant changes. The area of built-up land increased by 1.5 times in 2010 and is predicted to increase by 2.7 times in 2030 than that in 1990. The area of farmland increased from 34.5% in 1990 to 24.5% in 2010 and is predicted to decrease to 15.1% in 2030. The number of patches (NP) of built-up land decreased with increasing area, which promoted the dominance of built-up land over other landscape types. Five landscape types, those other than built-up land, increased in NP, landscape fragmentation, segmentation, and disturbance but decreased in dominance. The LER of Xiamen in 2010 was slightly lower than that in 1990. However, with the acceleration of urbanization, the LER in 2020 and 2030 will increase by 7.6% and 12.5% than that in 2010. The LER will significantly increase in areas such as the Huandong sea area, the second urban core of Xiamen, and northern Xiang'an. For the areas, some measures (e.g. optimum urban spatial growth patterns and control of coastal reclamation) must inevitably increase to reduce the LER posed by rapid urbanization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号