首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   439篇
  免费   10篇
  国内免费   23篇
安全科学   1篇
废物处理   2篇
环保管理   217篇
综合类   67篇
基础理论   77篇
污染及防治   37篇
评价与监测   32篇
社会与环境   39篇
  2023年   8篇
  2022年   6篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   5篇
  2016年   8篇
  2015年   8篇
  2014年   9篇
  2013年   11篇
  2012年   11篇
  2011年   23篇
  2010年   13篇
  2009年   26篇
  2008年   31篇
  2007年   27篇
  2006年   31篇
  2005年   15篇
  2004年   20篇
  2003年   17篇
  2002年   32篇
  2001年   30篇
  2000年   12篇
  1999年   15篇
  1998年   9篇
  1997年   12篇
  1996年   10篇
  1995年   14篇
  1994年   8篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1990年   12篇
  1989年   2篇
  1988年   3篇
  1987年   8篇
  1986年   5篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1978年   2篇
  1977年   1篇
  1968年   1篇
排序方式: 共有472条查询结果,搜索用时 15 毫秒
431.
重庆市清水溪河流沉积物重金属污染及潜在生态风险评价   总被引:7,自引:2,他引:5  
采用单因子指数法和Hakanson潜在生态风险指数法,通过分析清水溪流域18个采样点沉积物中典型重金属污染物Cd、Cr、Cu、Pb和Zn的含量,定量确定了清水溪沉积物中重金属的污染程度和潜在生态风险程度。结果表明,清水溪流域污染非常严重,上中游河段受到重金属的高强度污染,主要的重金属污染因子为Zn,污染因子的高低顺序为:Zn>Cu>Cr>Cd>Pb;潜在生态风险指数RI平均值为255.58,清水溪处于高值潜在生态风险,且上中游河段潜在生态风险指数很高,主要的潜在生态风险因子为Cd,潜在生态风险因子的大小顺序为:Cd>Cu>Cr>Zn>Pb。  相似文献   
432.
为了进一步探讨我国酸沉降对水陆生态环境的影响以及典型地区生态系统对酸沉降的缓冲能力和临界负荷值,笔者对赣、鄂、湘3省具有代表性的土壤的SO吸附特性进行了研究。结果表明,红壤,待别是江西省的红壤,吸附SO的能力最强,最大吸附量达11.52mg/g士;其余依次为黄壤、棕红壤、黄褐壤和黄红壤,最大吸附量分别为11.14,8.83,6.86和6.53mg/g土;红色石灰壤对SO的吸附能力最弱,最大吸附量仅3.55mg/g土,只及红壤的30.8%。可以预计,就地区而言,以红壤为主的江西省是我国对酿沉降最敏感的地区之一。  相似文献   
433.
The impact of urbanization on stream channels has been investigated in a range of areas; the degree and extent of the channel adjustments have been demonstrated; and for a few areas these characteristics have recently been placed into a spatial context. A method of rapid field survey for depicting the channel network of urban areas in terms of near natural, adjusted, and channelized systems is illustrated for the urban area of Armidale NSW, for which Armidale Dumaresq Council had prepared a stormwater management plan. Such a survey could enable channel characteristics and adjustments, as well as water quantity and quality, to be included in the management plan. Possible options for management to address are suggested for each of the channel categories. A channel classification system of the kind suggested can provide a basic complement for the further development of the stormwater management plan, can afford a basis for specifying management alternatives, and can be helpful in demonstrating the options offered for community consultation.  相似文献   
434.
Water quality levels and loads of nutrients transported by the Agüera stream (northern Spain) were studied for a year to assess the self-purification capacity of this system. The main villages produce an increase of nutrient concentrations and a degradation of water quality. Nevertheless, the high retention capacity, especially for phosphate, allows the stream to recover its previous levels of quality after a short reach. The retention of nutrients depends on a complex combination of the flow level, hydrologic stability and the development of periphytic communities.  相似文献   
435.
The data presented were obtained at the first stage (1993–1999) of studies on evaluating the basic parameters of biological production in Russian terrestrial ecosystems in order to provide information for assessing and modeling the carbon budget of the entire terrestrial biota of the country. Stocks of phytomass (by fractions), coarse woody debris, and dead roots (underground necromass) were calculated by two independent methods, which yielded close results. The total amount of phytomass in Russian terrestrial ecosystems was estimated at 81800 Tg (=1012 g = million t) dry matter, or 39989 Tg carbon. Forest ecosystems comprise a greater part (82.1%) of live plant organic matter (here and below, comparisons are made with respect to the carbon content); natural grasslands and brushwoods account for 8.8%; the phytomass of wetlands (bogs and swamps), for 6.6%; and the phytomass of farmlands, for only 2.5%. Aboveground wood contains approximately two-thirds of the plant carbon (63.8%), and green parts contain 9.9%. For all classes of ecosystems, the proportion of underground phytomass averages 26.7% of the total amount, varying from 22.0% in forests to 57.1% in grasslands and brushwoods. The average phytomass density on lands covered with vegetation (1629.9 million hectares in Russia) is 5.02 kg/m2 dry matter, or 2.45 kg C/m2. The total amount of carbon in coarse woody debris is 4955 Tg C, and 9180 Tg C are in the underground necromass. In total, the vegetation of Russian terrestrial ecosystems (without litter) contains 54124 Tg carbon.  相似文献   
436.
The estimated net primary production (NPP) of Russian terrestrial ecosystems (annual average over the period from 1988 to 1992) is 9544 Tg of dry matter, or 4353 Tg of carbon. Of the total amount, forests account for approximately 39.2% (here and below, comparisons are made with respect to carbon content); natural grasslands and brushwoods, for 27.6%; farmlands (arable land and cultivated pastures), for 22.0%; and wetlands, for 11.2%. The average NPP density on lands covered with vegetation (1629.8 million hectares in Russia) is 267 g C/m2per year. The highest value (498 g C/m2per year) is characteristic of arable lands. Other land-use/land-cover (LULC) classes have the following NPP densities (in areas covered with vegetation): grasslands and brushwoods, 278 g C/m2; forests, 224 g C/m2; and wetlands, 219 g C/m2per year. In general, Russian terrestrial ecosystems accumulate 59.7% of the total NPP in the aboveground phytomass (47.8% in green parts and 11.9% in wood) and 40.3% in the underground phytomass. The latter parameter differs significantly in different LULC classes and bioclimatic zones. According to calculations, the uncertainty in estimating the total NPP is 11% (a priori confidential probability 0.9).  相似文献   
437.
Understanding the environmental consequences of changing water regimes is a daunting challenge for both resource managers and ecologists. Balancing human demands for fresh water with the needs of the environment for water in appropriate amounts and at the appropriate times are shaping the ways by which this natural resource will be used in the future. Based on past decisions that have rendered many freshwater resources unsuitable for use, we argue that river systems have a fundamental need for appropriate amounts and timing of water to maintain their biophysical integrity. Biophysical integrity is fundamental for the formulation of future sustainable management strategies. This article addresses three basic ecological principles driving the biogeochemical cycle of nitrogen in river systems. These are (1) how the mode of nitrogen delivery affects river ecosystem functioning, (2) how increasing contact between water and soil or sediment increases nitrogen retention and processing, and (3) the role of floods and droughts as important natural events that strongly influence pathways of nitrogen cycling in fluvial systems. New challenges related to the cumulative impact of water regime change, the scale of appraisal of these impacts, and the determination of the impacts due to natural and human changes are discussed. It is suggested that cost of long-term and long-distance cumulative impacts of hydrological changes should be evaluated against short-term economic benefits to determine the real environmental costs.  相似文献   
438.
This is a study of the scientific component of an effort to restore an urban river by removing a low-head dam. The Secor Dam is owned by a local government entity near Toledo, Ohio. The proposed removal of the last structure impeding flow on the Ottawa River has broad appeal, but the owner is concerned about liability issues, particularly potential changes to the flood regime, the presence of contaminated sediments behind the dam, and possible downstream transport of reservoir sediments. Assessing sediment contamination involved sediment sampling and analysis of trace metals and organic contaminants. Forecasting sediment transport involved field methods to determine the volume and textural properties of reservoir and upstream sediment and calculations to determine the fate of reservoir sediments. Forecasting changes in the flood regime involved HEC-RAS hydrological models to determine before and after dam removal flood scenarios using LiDAR data imported into an ArcGIS database. The resulting assessment found potential sediment contamination to be minor, and modeling showed that the removal of the dam would have minimal impacts on sediment transport and flood hazards. Based on the assessment, the removal of the dam has been approved by its owners.  相似文献   
439.
Globally, offset schemes have emerged in many statutory frameworks relating to development activities, with the aim of balancing biodiversity conservation and development. Although the theory and use of biodiversity offsets in terrestrial environments is broadly documented, little attention has been paid to offsets in stream ecosystems. Here we examine the application of offset schemes to stream ecosystems and explore whether they suffer similar shortcomings to those of offset schemes focused on terrestrial biodiversity. To challenge the applicability of offsets further, we discuss typical trajectories of urban expansion and their cascading physical, chemical and biological impacts on stream ecosystems. We argue that the highly connected nature of stream ecosystems and urban drainage networks can transfer impacts of urbanization across wide areas, complicating the notion of like‐for‐like exchange and the prospect of effectively mitigating biodiversity loss. Instead, we identify in‐catchment options for stormwater control, which can avoid or minimize the impacts of development on downstream ecosystems, while presenting additional public and private benefits. We describe the underlying principles of these alternatives, some of the challenges associated with their uptake, and policy initiatives being trialed to facilitate adoption. In conclusion, we argue that stronger policies to avoid and minimize the impacts of urbanization provide better prospects for protecting downstream ecosystems, and can additionally, stimulate economic opportunities and improve urban liveability.  相似文献   
440.
Rapid Assessment of Plant Diversity Patterns: A Methodology for Landscapes   总被引:2,自引:0,他引:2  
We present a rapid, cost-efficient methodology to link plantdiversity surveys from plots to landscapes using: (1) unbiasedsite selection based on remotely sensed information; (2) multi-scale field techniques to assess plant diversity; (3)mathematical models (species-area curves) to estimate thenumber of species in larger areas corrected for within-typeheterogeneity; and (4) mathematical techniques to estimatetotal species richness and patterns of plant diversity in alandscape. We demonstrate the methodology in a 754 ha studyarea in Rocky Mountain National Park, Colorado, U.S.A.,using four 0.025 ha and twenty-one 0.1 ha multi-scalevegetation plots. We recorded 330 plant species (1/3 thenumber of plants recorded in the 1074 km2 Park) in the2.2 ha area within the plots: this represents a samplingintensity of 0.29% of the 754 ha study site. We estimated 552plant species, about half the plant species recorded in the Park,in just 0.7% of the Parks area. We show how this rapid,cost-efficient methodology: (1) produces a rich informationbase on the patterns of native plant diversity and thedistribution of non-native plant species and keystoneecosystems; and (2) can be easily adapted for other nationaland state parks, national forests, wildlife refuges, and nature reserves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号