首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   1篇
  国内免费   4篇
环保管理   3篇
综合类   7篇
基础理论   4篇
污染及防治   16篇
社会与环境   2篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2013年   1篇
  2012年   1篇
  2011年   5篇
  2010年   1篇
  2009年   5篇
  2008年   3篇
  2007年   1篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  1997年   2篇
  1994年   1篇
排序方式: 共有32条查询结果,搜索用时 62 毫秒
21.
Trapped organic solvents, in both the vadose zone and below the water table, are frequent sources of environmental contamination. A common source of organic solvent contamination is spills, leaks, and improper solvent disposal associated with dry cleaning processes. Dry cleaning solvents, such as tetrachloroethylene (PCE), are typically enhanced with the addition of surfactants to improve cleaning performance. The objective of this work was to examine the partitioning behavior of surfactants from PCE in contact with water. The relative rates of surfactants partitioning and PCE dissolution are important for modeling the behavior of waste PCE in the subsurface, in that they influence the interfacial tension of the PCE, and how (or if) interfacial tension changes over time in the subsurface. The work described here uses a flow-through system to examine simultaneous partitioning and PCE dissolution in a porous medium. Results indicate that both nonylphenol ethoxylate nonionic surfactants and a sulfosuccinate anionic surfactant partition out of residual PCE much more rapidly than the PCE dissolves, suggesting that in many cases interfacial tension changes caused by partitioning may influence infiltration and distribution of PCE in the subsurface. Non-steady-state partitioning is found to be well-described by a linear driving force model incorporating measured surfactant partition coefficients.  相似文献   
22.
Uptake of Pd, Cd and Pb by the marine macroalga, Ulva lactuca, has been studied in the presence of an anionic (sodium dodecyl sulphate, SDS), cationic (hexadecyltrimethylammonium bromide; HDTMA) and non-ionic (Triton X-100; TX) surfactant. Compared with the surfactant-free system, metal sorption was reduced in the presence of SDS or TX. Neither surfactant, however, had any measurable impact on cell membrane permeability, determined by leakage of dissolved free amino acids (DFAA), or on metal internalisation. We attribute these observations to the stabilisation of aqueous Cd and Pb by SDS and the shielding of otherwise amenable sorption sites by TX. Presence of HDTMA resulted in a reduction in the extent of both sorption and internalisation of all metals and a significant increase in the leakage of DFAA. Thus, by enhancing membrane permeability, HDTMA exerts the greatest influence on metal behaviour in the presence of U. lactuca.  相似文献   
23.
The increasing manufacture of surfactants and their wide application in industry,agriculture and household detergents have resulted in large amounts of surfactant residuals being discharged into water and distributed into sediment. Surfactants have the potential to enhance arsenic mobility, leading to risks to the environment and even human beings. In this study, batch and column experiments were conducted to investigate arsenic mobilization from contaminated sediment by the commercial anionic surfactants sodium dodecylbenzenesulfonate(SDBS), sodium dodecyl sulfate(SDS), sodium laureth sulfate(AES)and nonionic surfactants phenyl-polyethylene glycol(Triton X-100) and polyethylene glycol sorbitan monooleate(Tween-80). The ability of surfactants to mobilize arsenic followed the order AES SDBS SDS ≈ Triton X-100 Tween 80. Arsenic mobilization by AES and Triton X-100 increased greatly with the increase of surfactant concentration and p H, while arsenic release by SDBS, SDS and Tween-80 slightly increased. The divalent ion Ca~(2+) caused greater reduction of arsenic mobilization than Na~+. Sequential extraction experiments showed that the main fraction of arsenic mobilized was the specifically adsorbed fraction. Solid phase extraction showed that arsenate(As(V)) was the main species mobilized by surfactants,accounting for 65.05%–77.68% of the total mobilized arsenic. The mobilization of arsenic was positively correlated with the mobilization of iron species. The main fraction of mobilized arsenic was the dissolved fraction, accounting for 70% of total mobilized arsenic.  相似文献   
24.
Transport behaviors of graphene oxide nanoparticles (GONPs) in saturated porous media were examined as a function of the presence and concentration of anionic surfactant (SDBS) and non-ionic surfactant (Triton X-100) under different ionic strength (IS). The results showed that the GONPs were retained obviously in the sand columns at both IS of 50 and 200 mmol/L, and they were more mobile at lower IS. The presence and concentration of surfactants could enhance the GONP transport, particularly as observed at higher IS. It was interesting to see that the GONP transport was surfactant type dependent, and SDBS was more effective to facilitate GONP transport than Triton X-100 in our experimental conditions. The advection–dispersion–retention numerical modeling followed this trend and depicted the difference quantitatively. Derjaguin–Landau–Verwey–Overbeek (DLVO) interaction calculations also were performed to interpret these effects, indicating that secondary minimum deposition was critical in this study.  相似文献   
25.
Organic contaminants that decrease the surface tension of water (surfactants) can have an effect on unsaturated flow through porous media due to the dependence of capillary pressure on surface tension. We used an intermediate-scale 2D flow cell (2.44 x 1.53 x 0.108 m) packed with a fine silica sand to investigate surfactant-induced flow perturbations. Surfactant solution (7% 1-butanol and dye tracer) was applied at a constant rate at a point source located on the soil surface above an unconfined synthetic aquifer with ambient groundwater flow and a capillary fringe of approximately 55 cm. A glass plate allowed for visual flow and transport observations. Thirty instrumentation stations consist of time domain reflectometry probes and tensiometers measured in-situ moisture content and pressure head, respectively. As surfactant solution was applied at the point source, a transient flow perturbation associated with the advance of the surfactant solution was observed. Above the top of the capillary fringe the advance of the surfactant solution caused a visible drainage front that radiated from the point source. Upon reaching the capillary fringe, the drainage front caused a localized depression of the capillary fringe below the point source because the air-entry pressure decreased in proportion to the decrease in surface tension caused by the surfactant. Eventually, a new capillary fringe height was established. The height of the depressed capillary fringe was proportional to height of the initial capillary fringe multiplied by the relative surface tension of the surfactant solution. The horizontal transport of surfactant in the depressed capillary fringe, driven primarily by the ambient groundwater flow, caused the propagation of a wedge-shaped drying front in the downgradient direction. Comparison of dye transport during the surfactant experiment to dye transport in an experiment without surfactant indicated that because surfactant-induced drainage decreased the storage capacity of the vadose zone, the dye breakthrough time to the water table was more than twice as fast when the contaminant solution contained surfactant. The extensive propagation of the drying front and the effect of vadose zone drainage on contaminant breakthrough time suggest the importance of considering surface tension effects on unsaturated flow and transport in systems containing surface-active organic contaminants or systems, where surfactants are used for remediation of the vadose zone or unconfined aquifers.  相似文献   
26.
The colloidal stability of dry and suspended carbon nanotubes (CNTs) in the presence of amphiphilic compounds (i.e. natural organic matter or surfactants) at environmentally realistic concentrations was investigated over several days. The suspensions were analyzed for CNT concentration (UV-vis spectroscopy), particle size (nanoparticle tracking analysis), and CNT length and dispersion quality (TEM). When added in dry form, around 1% of the added CNTs remained suspended. Pre-dispersion in organic solvent or anionic detergent stabilized up to 65% of the added CNTs after 20 days of mild shaking and 5 days of settling. The initial state of the CNTs (dry vs. suspended) and the medium composition hence are critical determinants for the partitioning of CNTs between sediment and the water column. TEM analysis revealed that single suspended CNTs were present in all suspensions and that shaking and settling resulted in a fractionation of the CNTs with shorter CNTs remaining predominantly in suspension.  相似文献   
27.
Surfactants are amphiphilic molecules that reduce aqueous surface tension and increase the solubility of hydrophobic organic compounds (HOCs). Surfactant-amended remediation of HOC-contaminated soils and aquifers has received significant attention as an effective treatment strategy - similar in concept to using soaps and detergents as washing agents to remove grease from soiled fabrics. The proposed mechanisms involved in surfactant-amended remediation include: lowering of interfacial tension, surfactant solubilization of HOCs, and the phase transfer of HOC from soil-sorbed to pseudo-aqueous phase. However, as with any proposed chemical countermeasures, there is a concern regarding the fate of the added surfactant. This review summarizes the current state of knowledge regarding nonionic micelle-forming surfactant sorption onto soil, and serves as an introduction to research on that topic. Surfactant sorption onto soil appears to increase with increasing surfactant concentration until the onset of micellization. Sorbed-phase surfactant may account for the majority of added surfactant in surfactant-amended remediation applications, and this may result in increased HOC partitioning onto soil until HOC solubilization by micellar phase surfactant successfully competes with increased HOC sorption on surfactant-modified soil. This review provides discussion of equilibrium partitioning theory to account for the distribution of HOCs between soil, aqueous phase, sorbed surfactant, and micellar surfactant phases, as well as recently developed models for surfactant sorption onto soil. HOC partitioning is characterized by apparent soil-water distribution coefficients in the presence of surfactant.  相似文献   
28.
Sorption and desorption of PFOS at water-sediment interfaces were investigated in the presence of a cationic surfactant, cetyltrimethylammonium bromide (CTAB), and an anionic surfactant, sodium dodecylbenzene sulfonate (SDBS). CTAB remarkably enhanced the sorption of PFOS on the sediment. In contrast, the influence of SDBS to the sorption of PFOS was concentration dependent. Two contrasting factors were responsible for the phenomenon. One was the sorption of the surfactant itself to the sediment, which enhanced the sorption of PFOS. The other was the increase in solubility of PFOS caused by the adding of surfactants, which decreased the sorption of PFOS. SDBS had a much lower sorption capacity, but rather strong ability to increase the solubility of PFOS. High levels of SDBS remarkably reduced the sorption of PFOS on the sediment. These results imply that cationic and anionic surfactants may have contrast impacts on the distribution and transport of PFOS in the environment.  相似文献   
29.
The mobilisation of metals (Al, Fe, Cd, Cu, Mn, Ni, Pb, Sn, Zn) from contaminated estuarine sediment has been examined using commercially available surfactants. Metal release by the anionic surfactant, sodium dodecyl sulphate (SDS), increased with increasing amphiphile concentration up to and above its critical micelle concentration (CMC). Metal mobilisation by the bile acid salt, sodium taurocholate, and the nonionic surfactant, Triton X-100, however, did not vary with amphiphile concentration. SDS was the most efficient surfactant in mobilising metals from the sample, and Cd, Cu and Ni were released to the greatest extents (12-18% of total metal at [SDS] > CMC). Metal mobilisation appeared to proceed via complexation with anionic amphiphiles and denudation of hydrophobic host phases. Surfactants may play an important role in the solubilisation of metals in the digestive environment of deposit-feeding animals and, potentially, in the remediation of metal-contaminated soil and sediment.  相似文献   
30.
The massive production and wide use of surfactants have resulted in a large amount of surfactant residuals being discharged into the environment,which could have an impact on arsenic behavior.In the present study,the influence of the anionic surfactant sodium dodecyl benzene sulfonate(SDBS) and nonionic surfactant polyethylene glycol octylphenyl ether(Triton X-100) on arsenic behavior was investigated in batch and column tests.The presence of SDBS and Triton X-100 reduced arsenic retention onto ferrihydrite(FH),enhanced arsenic transport through FH coated sand(FH-sand) columns and promoted arsenic release from the FH surface.With coexisting surfactants in solution,the equilibrium adsorbed amount of arsenic on FH decreased by up to 29.7% and the adsorption rate decreased by up to 52.3%.Pre-coating with surfactants caused a decrease in the adsorbed amount and adsorption rate of arsenic by up to 15.1% and 58.3%,respectively.Because of the adsorption attenuation caused by surfactants,breakthrough of As(Ⅴ) and As(Ⅲ) with SDBS in columns packed with FH-sand was 23.8% and 14.3%faster than that in those without SDBS,respectively.In columns packed with SDBS-coated FH-sand,transport of arsenic was enhanced to a greater extent.Breakthrough of As(Ⅴ) and As(Ⅲ) was 52.4% and 43.8% faster and the cumulative retention amount was 44.5% and 57.3% less than that in pure FH-sand column systems,respectively.Mobilization of arsenic by surfactants increased with the increase of the initial adsorbed amount of arsenic.The cumulative release amount of As(Ⅴ) and As(Ⅲ) from the packed column reached 10.8% and 36.0%,respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号