排序方式: 共有57条查询结果,搜索用时 0 毫秒
51.
Cow excrements enhance the occurrence of tetracycline resistance genes in soil regardless of their oxytetracycline content 总被引:1,自引:0,他引:1
Martina Kyselková Jiří Jirout Alica Chroňáková Naděžda Vrchotová Robert Bradley Heike Schmitt Dana Elhottová 《Chemosphere》2013
Fertilizing soils with animal excrements from farms with common antibiotic use represents a risk of disseminating antibiotic resistance genes into the environment. In the case of tetracycline antibiotics, it is not clear, however, whether the presence of antibiotic residues further enhances the gene occurrence in manured soils. We established a microcosm experiment in which 3 farm soils that had no recent history of fertilization with animal excrements were amended on a weekly basis (9 times) with excrements from either an oxytetracycline-treated or an untreated cow. Throughout the study, the concentration of oxytetracycline in excrements from the treated cow was above 500 μg g−1 dw, whereas no oxytetracycline was detected in excrements from the healthy cow. Both excrements contained tetracycline resistance (TC-r) genes tet(L), tet(M), tet(V), tet(Z), tet(Q) and tet(W). The excrements from the treated cow also contained the tet(B) gene, and a higher abundance of tet(Z), tet(Q) and tet(W). Three weeks after the last excrement addition, the individual TC-r genes differed in their persistence in soil: tet(Q) and tet(B) were not detectable while tet(L), tet(M), tet(Z) and tet(W) were found in all 3 soils. There were, however, no significant differences in the total number, nor in the abundance, of TC-r genes between soil samples amended with each excrement type. The oxytetracycline-rich and the oxytetracycline-free excrement therefore contributed equally to the increase of tetracycline resistome in soil. Our results indicate that other mechanisms than OTC-selection pressure may be involved in the maintenance of TC-r genes in manured soils. 相似文献
52.
Tetracycline is widely used in livestock and poultry breeding industry, which can cause serious problems to the environment. Antibiotic pollution has become an important environmental issue. This study aimed to isolate and identify a well-functioning tetracycline-degrading bacteria strain from activated sludge and to investigate its optimum degradation conditions. The strain was identified through morphological features, Gram staining, and the sequence analysis of 16S rRNA. Furthermore, the temperature, initial pH of the medium, inoculation amount, and type of metallic salt were analyzed to investigate the tetracycline degradation performance of the isolated strain. Based on the single factor test, the method of response surface analysis was adopted to optimize the degradation condition. The strain was named TTC-1 and identified as Klebsiella pneumoniae. The optimum condition for tetracycline degradation was determined as follows: temperature of 34.4 °C, pH of 7.22, and MnSO4 concentration of 0.32 g/L. Under this optimum condition, the predicted tetracycline degradation rate was 93.77%, whereas the observed value was 94.26%. The experimental results showed that the proposed model had high accuracy. TTC-1 showed a good performance in degrading tetracycline, which can provide reference for the bacteria during the biological treatment of tetracycline containing wastewater. © 2018 Science Press. All rights reserved. 相似文献
53.
Previous work has shown that tetracycline undergoes direct photolysis in the presence of sunlight, with the decomposition rate highly dependent on conditions such as water hardness and pH. The purpose of this study was to examine the potential long-term significance of photoproducts formed when tetracycline undergoes photodegradation under a range of environmentally relevant conditions. Tetracycline was photolyzed in nine different natural and artificial water samples using simulated sunlight. The pH values of the samples ranged from 5 to 9. Total hardness values (combined Ca2+ and Mg2+ concentrations) varied from 30 to 450 ppm. Assays based on growth inhibition of two bacterial strains, Escherichia coli DH5α and Vibrio fischeri, were used to determine the antibacterial activity of tetracycline’s photoproducts in these water samples. In all tested conditions, it was determined that the photoproducts retain no significant antibacterial activity; all observed growth inhibition was attributable to residual tetracycline. This suggests that tetracycline photoproducts formed under a wide range of pH and water hardness conditions will not contribute to the selection of antibiotic-resistant bacteria in environmental systems. 相似文献
54.
《环境科学学报(英文版)》2023,35(4):58-69
Co-exposure to heavy metal and antibiotic pollution might result in complexation and synergistic interactions, affecting rice growth and further exacerbating pollutant enrichment. Therefore, our study sought to clarify the influence of different Tetracycline (TC) and Cadmium(Cd) concentration ratios (both alone and combined) on rice growth, pollutant accumulation, and transportation during the tillering stage in hydroponic system. Surprisingly, our findings indicated that the interaction between TC and Cd could alleviate the toxic effects of TC/Cd on aerial rice structures and decrease pollutant burdens during root elongation. In contrast, TC and Cd synergistically promoted the accumulation of TC/Cd in rice roots. However, their interaction increased the accumulation of TC in roots while decreasing the accumulation of Cd when the toxicant doses increased. The strong affinity of rice to Cd promoted its upward transport from the roots, whereas the toxic effects of TC reduced TC transport. Therefore, the combined toxicity of the two pollutants inhibited their upward transport. Additionally, a low concentration of TC promoted the accumulation of Cd in rice mainly in the root tip. Furthermore, a certain dose of TC promoted the upward migration of Cd from the root tip. Laser ablation-inductively coupled plasma mass spectrometry demonstrated that Cd mainly accumulated in the epidermis and stele of the root, whereas Fe mainly accumulated in the epidermis, which inhibited the absorption and accumulation of Cd by the rice roots through the generation of a Fe plaque. Our findings thus provide insights into the effects of TC and Cd co-exposure on rice growth. 相似文献
55.
Wenxia Wang Zhen Li Kailin Wu Guodong Dai Qingping Chen Lihua Zhou Junxia Zheng Liang Ma Guiying Li Wanjun Wang Taicheng An 《环境科学学报(英文版)》2023,35(9):123-140
Rational design and synthesis of highly efficient and robust photocatalysts with positive exciton splitting and interfacial charge transfer for environmental applications is critical.Herein, aiming at overcoming the common shortcomings of traditional photocatalysts such as weak photoresponsivity, rapid combination of photo-generated carriers and unstable structure, a novel Ag-bridged dual Z-scheme g-C3N4/BiOI/AgI plasmonic heterojunction was successfully synthesized using a... 相似文献
56.
57.
In order to study the influences of functionalized groups onto the adsorption of tetracycline (TC), we prepared a series of amino and amino–Fe3 + complex mesoporous silica adsorbents with diverse content of amino and Fe3 + groups (named N,N-SBA15 and Fe-N,N-SBA15). The resulting mesoporous silica adsorbents were fully characterized by X-ray powder diffraction, Fourier transform infrared spectrometer and N2 adsorption/desorption isotherms. Furthermore, the effects of functionalized groups on the removal of TC were investigated. The results showed that the periodic ordered structure of SBA-15 was maintained after modification of amino/Fe3 + groups. The functionalized amino groups decreased the adsorption capacity while the coordinated Fe3 + increased the adsorption capacity. The adsorption kinetics of TC fitted pseudo-second-order model well and the equilibrium was achieved quickly. The adsorption isotherms fitted the Langmuir model well and with the Fe3 + content increased from 3.93% to 8.26%, the Qmax of the adsorbents increased from 102 to 188 mmol/kg. The solution pH affected the adsorption of TC onto amino complex adsorbents slightly while influenced the adsorption onto Fe-amine complex adsorbents greatly. The adsorption of TC on SBA15 and N,N-SBA15 may be related to the formation of outer-sphere surface complexes, while the adsorption of TC onto Fe-N,N-SBA15 was mainly attributed to the inner-sphere surface complexes. This study could offer potential materials that have excellent adsorption behavior for environmental remediation and suggested useful information for the preparing other adsorbents in environmental applications. 相似文献