首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   710篇
  免费   35篇
  国内免费   55篇
安全科学   15篇
废物处理   4篇
环保管理   242篇
综合类   238篇
基础理论   147篇
污染及防治   45篇
评价与监测   40篇
社会与环境   56篇
灾害及防治   13篇
  2024年   3篇
  2023年   7篇
  2022年   15篇
  2021年   17篇
  2020年   14篇
  2019年   18篇
  2018年   19篇
  2017年   23篇
  2016年   28篇
  2015年   33篇
  2014年   29篇
  2013年   33篇
  2012年   28篇
  2011年   57篇
  2010年   36篇
  2009年   58篇
  2008年   52篇
  2007年   54篇
  2006年   44篇
  2005年   34篇
  2004年   26篇
  2003年   22篇
  2002年   23篇
  2001年   24篇
  2000年   12篇
  1999年   21篇
  1998年   3篇
  1997年   10篇
  1996年   3篇
  1995年   8篇
  1994年   5篇
  1993年   2篇
  1992年   6篇
  1991年   4篇
  1990年   7篇
  1988年   3篇
  1986年   4篇
  1984年   1篇
  1982年   1篇
  1981年   2篇
  1980年   6篇
  1979年   3篇
  1978年   2篇
排序方式: 共有800条查询结果,搜索用时 31 毫秒
341.
Using data from a variety of sources, land use and vegetation in Texas were mapped with a spatial resolution of approximately 1 km. Over 600 classifications were used to characterize the land use and land cover throughout the state and field surveys were performed to assign leaf biomass densities, by species, to the land cover classifications. The total leaf biomass densities associated with these land use classifications ranged from 0 to 556 g/m2, with the highest assigned total and oak leaf biomass densities located in central and eastern Texas. The land cover data were used as input to a biogenic emissions model, GLOBEIS2. Estimates of biogenic emissions of isoprene based on GLOBEIS2 and the new land cover data showed significant differences when compared to biogenic isoprene emissions estimated using previous land cover data and emission estimation procedures. For example, for one typical domain in eastern Texas, total daily isoprene emissions increased by 38% with the new modeling tools. These results may ultimately affect the way in which ozone and other photochemical pollutants are modeled and evaluated in the state of Texas.  相似文献   
342.
343.
Indian Himalayan basins are earmarked for widespread dam building, but aggregate effects of these dams on terrestrial ecosystems are unknown. We mapped distribution of 292 dams (under construction and proposed) and projected effects of these dams on terrestrial ecosystems under different scenarios of land‐cover loss. We analyzed land‐cover data of the Himalayan valleys, where dams are located. We estimated dam density on fifth‐ through seventh‐order rivers and compared these estimates with current global figures. We used a species–area relation model (SAR) to predict short‐ and long‐term species extinctions driven by deforestation. We used scatter plots and correlation studies to analyze distribution patterns of species and dams and to reveal potential overlap between species‐rich areas and dam sites. We investigated effects of disturbance on community structure of undisturbed forests. Nearly 90% of Indian Himalayan valleys would be affected by dam building and 27% of these dams would affect dense forests. Our model projected that 54,117 ha of forests would be submerged and 114,361 ha would be damaged by dam‐related activities. A dam density of 0.3247/1000 km2 would be nearly 62 times greater than current average global figures; the average of 1 dam for every 32 km of river channel would be 1.5 times higher than figures reported for U.S. rivers. Our results show that most dams would be located in species‐rich areas of the Himalaya. The SAR model projected that by 2025, deforestation due to dam building would likely result in extinction of 22 angiosperm and 7 vertebrate taxa. Disturbance due to dam building would likely reduce tree species richness by 35%, tree density by 42%, and tree basal cover by 30% in dense forests. These results, combined with relatively weak national environmental impact assessment and implementation, point toward significant loss of species if all proposed dams in the Indian Himalaya are constructed. Efectos Potenciales del Desarrollo Hidroeléctrico Actual y Propuesto sobre la Diversidad Biológica Terrestre en el Himalaya Hindú  相似文献   
344.
Fuelwood is one of the major sources of energy in the domestic sector across the rural areas, especially in the developing regions across the world. The Northeastern Himalayan state of Manipur is dominated by the tribal population that largely depends on fuelwood from the nearby forest area. The entire dependence on forests for energy resources is affecting the sustainability of the forest ecosystem in the region, thus indicating the livelihood conditions. Since land-use land-cover change is the key driver to the change in resource availability of a region, the present study has tried to analyze the land-cover changes over a period 28 years. The second major component affecting resource availability is the increasing population pressure that leads to changes in the land dynamics, which directly affect the resource production. Based on the existing consumption pattern, the total consumption of fuelwood in the watershed ranges from a minimum of 289.992 tons/year to a maximum of 3545.719 tons/year with an average of 1561.956 tons/year in the year 2009 and simulated fuelwood consumption for the year 2021 is around 1469.260 tons/year. Nine different probable scenarios of resource are proposed to calculate the stress value that can be used by the policy-makers and planners for suitable policy implementation at the micro level with a complex social system.  相似文献   
345.
Future climate and land‐use changes and growing human populations may reduce the abundance of water resources relative to anthropogenic and ecological needs in the Northeast and Midwest (U.S.). We used output from WaSSI, a water accounting model, to assess potential changes between 2010 and 2060 in (1) anthropogenic water stress for watersheds throughout the Northeast and Midwest and (2) native fish species richness (i.e., number of species) for the Upper Mississippi water resource region (UMWRR). Six alternative scenarios of climate change, land‐use change, and human population growth indicated future water supplies will, on average across the region, be adequate to meet anthropogenic demands. Nevertheless, the number of individual watersheds experiencing severe stress (demand > supplies) was projected to increase for most scenarios, and some watersheds were projected to experience severe stress under multiple scenarios. Similarly, we projected declines in fish species richness for UMWRR watersheds and found the number of watersheds with projected declines and the average magnitude of declines varied across scenarios. All watersheds in the UMWRR were projected to experience declines in richness for at least two future scenarios. Many watersheds projected to experience declines in fish species richness were not projected to experience severe anthropogenic water stress, emphasizing the need for multidimensional impact assessments of changing water resources.  相似文献   
346.
中国的垃圾填埋场目前多采用高密度聚乙烯膜(HDPE)进行覆盖,已建成的填埋场均存在不同程度覆盖膜破损现象。采用填埋气泄漏可视化检测技术对中国东部某大型生活垃圾填埋场开展覆盖膜完整性检测,揭示了覆盖膜破损特征及破损成因,明确了破损点泄漏量,评估了其温室效应影响,梳理了国内外填埋场覆盖层监管相关管理规定和措施。结果表明:尖锐物体应力损伤导致的破损是填埋场覆盖膜破损的主要类型,粗放施工、监管机制不足、维护管理不到位是造成填埋场覆盖膜破损的主要原因。破损点的甲烷泄漏量约为817.2 m3/d,约合每年向大气环境释放温室气体超过4 900 t CO2-eq。完善填埋场污染控制标准和技术规范、加强填埋场覆盖膜完整性的监管,是控制填埋场温室气体排放和推进固废处置设施碳减排的重要举措。  相似文献   
347.
Urbanization impacts the stormwater regime through increased runoff volumes and velocities. Detention ponds and low impact development (LID) strategies may be implemented to control stormwater runoff. Typically, mitigation strategies are designed to maintain postdevelopment peak flows at predevelopment levels for a set of design storms. Peak flow does not capture the extent of changes to the hydrologic flow regime, and the hydrologic footprint residence (HFR) was developed to calculate the area and duration of inundated land during a storm. This study couples a cellular automata land cover change model with a hydrologic and hydraulic framework to generate spatial projections of future development on the fringe of a rapidly urbanizing metropolitan area. The hydrologic flow regime is characterized for existing and projected land cover patterns under detention pond and LID‐based control, using the HFR and peak flow values. Results demonstrate that for less intense and frequent rainfall events, LID solutions are better with respect to HFR; for larger storms, detention pond strategies perform better with respect to HFR and peak flow.  相似文献   
348.
We analyzed the effects of changes in land cover on the water balance in Spain’s Marina Baixa County, on the Mediterranean coast. To reveal how different land management strategies have affected the area’s environment, four municipalities within the same catchment were studied: Benidorm, Callosa d’en Sarrià, Beniardà, and Guadalest. In the municipalities of Callosa and Benidorm, the proportion of the area covered by woodland declined by 4.2% and 30.2%, respectively, and woodland was replaced by agriculture and urban development. The abandonment of farmland produced a 17% increase in the proportion of the area covered by vegetation in Guadalest and Beniardá, where frequent forest fires have exacerbated a decrease in the area of pine woodland. Tourism development in Benidorm has been accompanied by an increase in the transportation infrastructure and by an expansion of areas with an impermeable surface, with the lowest level of infiltration into the aquifer system. These changes have generated a net water deficit in Callosa and Benidorm of more than 6 Mm3/year, creating a high demand for water imported from other municipalities (Guadalest and Beniardá) or from outside of the county to maintain the sustainability of the current water management strategies. The Marina Baixa case study is representative of many of the world’s coastal areas that are undergoing rapid urban development based on an inappropriate understanding of human progress based mainly on economic development and thus provides insights into water management in other areas.  相似文献   
349.
Spatial distributions of the leaf area index (LAI) needed for carbon cycle modeling in Xingguo County, China were estimated based on correlations between the field-measurements and vegetation indices (VIs). After making geometric and atmospheric corrections to two Landsat ETM+ images, one in January 2000 and the other in May 2003, three VIs (SR, NDVI, and RSR) were derived, and their separate correlations with ground LAI measurements were established. The correlation with RSR was the highest among the three VIs. The retrieved LAI values for January 2000 were lower than those for May 2003 because of a small seasonal variation in the coniferous forests (predominantly masson pine) and the decrease in the understorey vegetation during winter.  相似文献   
350.
Photosynthetically fixed energy from the sun, in the form of net primary production, ultimately supports the majority of life on earth. Given the importance of this energy source, we calculate the human appropriation of net primary production (HANPP) for the province of Nova Scotia, Canada. We find that over 25% of potentially available production is appropriated by humans through harvest (forestry and agriculture) and land cover change. The level of appropriation in Nova Scotia is close to the global average, when methodological differences between studies are taken into account, but substantially less than in Austria and India where detailed surveys have also been conducted. Furthermore, HANPP is not distributed evenly throughout the province, but is instead concentrated in the north-central counties, where appropriation reaches 50%. We discuss the implications of these results, and the novel method used to obtain them, in the context of biophysical assessment and the species-energy hypothesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号