首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   940篇
  免费   9篇
  国内免费   40篇
安全科学   29篇
废物处理   179篇
环保管理   232篇
综合类   357篇
基础理论   34篇
污染及防治   74篇
评价与监测   70篇
社会与环境   14篇
  2023年   5篇
  2022年   12篇
  2021年   13篇
  2020年   24篇
  2019年   11篇
  2018年   7篇
  2017年   10篇
  2016年   19篇
  2015年   21篇
  2014年   108篇
  2013年   63篇
  2012年   31篇
  2011年   63篇
  2010年   16篇
  2009年   46篇
  2008年   37篇
  2007年   56篇
  2006年   49篇
  2005年   26篇
  2004年   34篇
  2003年   40篇
  2002年   42篇
  2001年   34篇
  2000年   41篇
  1999年   29篇
  1998年   35篇
  1997年   26篇
  1996年   22篇
  1995年   10篇
  1994年   32篇
  1993年   11篇
  1992年   5篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
  1977年   1篇
  1973年   1篇
排序方式: 共有989条查询结果,搜索用时 453 毫秒
41.
Recent targets for reduced amounts of waste to landfills in Sweden will result in a large increase in waste incineration with recovery of energy, used primarily for district heating. The aim of this study is to investigate what changes in the usage of other fuels and technologies for district heat production would be caused by this increase. A questionnaire was sent out to the largest district heating companies, and simulations in an energy systems model were carried out. The analysis shows that increased waste incineration reduces the demand for other fuels, especially biomass, for district heat production. The effects include reductions in operating hours as well as the avoidance or postponement of investments in new plants for district heat production. Increased waste incineration will also lead to a greater use of district heating in Sweden.  相似文献   
42.
Pyrolysis appears to be a promising recycling process since it could convert the disposed polymers to hydrocarbon based fuels or various useful chemicals. In the current study, two model polymers found in WEEEs, namely polycarbonate (PC) and high impact polystyrene (HIPS) and their counterparts found in waste commercial Compact Discs (CDs) were pyrolysed in a bench scale reactor. Both, thermal pyrolysis and pyrolysis in the presence of two catalytic materials (basic MgO and acidic ZSM-5 zeolite) was performed for all four types of polymers. Results have shown significant recovery of the monomers and valuable chemicals (phenols in the case of PC and aromatic hydrocarbons in the case of HIPS), while catalysts seem to decrease the selectivity towards the monomers and enhance the selectivity towards other desirable compounds.  相似文献   
43.
This paper studies the fate of PAHs in full scale incinerators by analysing the concentration of the 16 EPA-PAHs in both the input waste and all the outputs of a full scale Fluidized Bed Combustor (FBC). Of the analysed waste inputs i.e. Waste Water Treatment (WWT) sludge, Refuse Derived Fuel (RDF) and Automotive Shredder Residue (ASR), RDF and ASR were the main PAH sources, with phenanthrene, fluoranthene and pyrene being the most important PAHs. In the flue gas sampled at the stack, naphthalene was the only predominant PAH, indicating that the PAHs in FBC’s combustion gas were newly formed and did not remain from the input waste. Of the other outputs, the boiler and fly ash contained no detectable levels of PAHs, whereas the flue gas cleaning residue contained only low concentrations of naphthalene, probably adsorbed from the flue gas. The PAH fingerprint of the bottom ash corresponded rather well to the PAH fingerprint of the RDF and ASR, indicating that the PAHs in this output, in contrast to the other outputs, were mainly remainders from the PAHs in the waste inputs. A PAH mass balance showed that the total PAH input/output ratio of the FBC ranged from about 100 to about 2600 depending on the waste input composition and the obtained combustion conditions. In all cases, the FBC was clearly a net PAH sink.  相似文献   
44.
Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers. Finally, the sensitivity analysis is enhanced by a stochastic analysis to determine the effect of the volatility of parameters on the robustness of the model and the solution obtained.  相似文献   
45.
Conventional aerobic waste treatment technologies require the use of aeration devices that actively transport air through the stabilized waste mass, which greatly increases operating costs. In addition, improperly operated active aeration systems, may have the adverse effect of cooling the stabilized biomass. Because active aeration can be a limiting factor for the stabilization process, passive aeration can be equally effective and less expensive. Unfortunately, there are few reports documenting the use of passive aeration systems in municipal waste stabilization. There have been doubts raised as to whether a passive aeration system provides enough oxygen to the organic matter mineralization processes. In this paper, the effectiveness of aeration during aerobic stabilization of four different organic fractions of municipal waste in a reactor with an integrated passive ventilation system and leachate recirculation was analyzed. For the study, four fractions separated by a rotary screen were chosen. Despite the high temperatures in the reactor, the air flow rate was below 0.016 m3/h. Using Darcy’s equation, theoretical values of the air flow rate were estimated, depending on the intensity of microbial metabolism and the amount of oxygen required for the oxidation of organic compounds. Calculations showed that the volume of supplied air exceeded the microorganisms demand for oxidation and endogenous activity by 1.7–2.88-fold.  相似文献   
46.
Copper indium gallium diselenide (CIGS) is a promising material in thin film solar cell production. To make CIGS solar cells more competitive, both economically and environmentally, in comparison to other energy sources, methods for recycling are needed. In addition to the generally high price of the material, significant amounts of the metals are lost in the manufacturing process. The feasibility of recycling selenium from CIGS through oxidation at elevated temperatures was therefore examined. During oxidation gaseous selenium dioxide was formed and could be separated from the other elements, which remained in solid state. Upon cooling, the selenium dioxide sublimes and can be collected as crystals. After oxidation for 1 h at 800 °C all of the selenium was separated from the CIGS material. Two different reduction methods for reduction of the selenium dioxide to selenium were tested. In the first reduction method an organic molecule was used as the reducing agent in a Riley reaction. In the second reduction method sulphur dioxide gas was used. Both methods resulted in high purity selenium. This proves that the studied selenium separation method could be the first step in a recycling process aimed at the complete separation and recovery of high purity elements from CIGS.  相似文献   
47.
The addition of lipid wastes to the digestion of swine manure was studied as a means of increasing biogas production. Lipid waste was obtained from a biodiesel plant where used cooking oil is the feedstock. Digestion of this co-substrate was proposed as a way of valorising residual streams from the process of biodiesel production and to integrate the digestion process into the biorefinery concept.Batch digestion tests were performed at different co-digesting proportions obtaining as a result an increase in biogas production with the increase in the amount of co-substrate added to the mixture. Semi-continuous digestion was studied at a 7% (w/w) mass fraction of total solids. Co-digestion was successful at a hydraulic retention time (HRT) of 50 d but a decrease to 30 d resulted in a decrease in specific gas production and accumulation of volatile and long chain fatty acids. The CH4 yield obtained was 326 ± 46 l/kg VSfeed at an HRT of 50 d, while this value was reduced to 274 ± 43 l/kg VSfeed when evaluated at an HRT of 30 d. However these values were higher than the one obtained under batch conditions (266 ± 40 l/kg VSfeed), thus indicating the need of acclimation to the co-substrate. Despite of operating at low organic loading rate (OLR), measurements from respirometry assays of digestate samples (at an HRT of 50 d) suggested that the effluent could not be directly applied to the soil as fertiliser and might have a negative effect over soil or crops.  相似文献   
48.
The continuously increasing solid waste generation worldwide calls for management strategies that integrate concerns for environmental sustainability. By quantifying environmental impacts of systems, life cycle assessment (LCA) is a tool, which can contribute to answer that call. But how, where and to which extent has it been applied to solid waste management systems (SWMSs) until now, and which lessons can be learnt from the findings of these LCA applications? To address these questions, we performed a critical review of 222 published LCA studies of SWMS. We first analysed the geographic distribution and found that the published studies have primarily been concentrated in Europe with little application in developing countries. In terms of technological coverage, they have largely overlooked application of LCA to waste prevention activities and to relevant waste types apart from household waste, e.g. construction and demolition waste. Waste management practitioners are thus encouraged to abridge these gaps in future applications of LCA. In addition to this contextual analysis, we also evaluated the findings of selected studies of good quality and found that there is little agreement in the conclusions among them. The strong dependence of each SWMS on local conditions, such as waste composition or energy system, prevents a meaningful generalisation of the LCA results as we find it in the waste hierarchy. We therefore recommend stakeholders in solid waste management to regard LCA as a tool, which, by its ability of capturing the local specific conditions in the modelling of environmental impacts and benefits of a SWMS, allows identifying critical problems and proposing improvement options adapted to the local specificities.  相似文献   
49.
The co-digestion of a variable amount of fruit and vegetable waste in a waste mixed sludge digester was investigated using a pilot scale apparatus. The organic loading rate (OLR) was increased from 1.46 kg VS/m3 day to 2.8 kg VS/m3 day. The hydraulic retention time was reduced from 14 days to about 10 days. Specific bio-methane production increased from about 90 NL/kg VS to the maximum value of about 430 NL/kg VS when OLR was increased from 1.46 kg VS/m3 day to 2.1 kg VS/m3 day. A higher OLR caused an excessive reduction in the hydraulic retention time, enhancing microorganism wash out. Process stability evaluated by the total volatile fatty acids concentration (mg/l) to the alkalinity buffer capacity (eq. mg/l CaCO3) ratio (i.e. FOS/TAC) criterion was <0.1 indicating high stability for OLR <2.46 kg VS/m3 day. For higher OLR, FOS/TAC increased rapidly. Residual phytotoxicty of the digestate evaluated by the germination index (GI) (%) was quite constant for OLR < 2.46 kg VS/m3 day, which is lower than the 60% limit, indicating an acceptable toxicity level for crops. For OLR > 2.46 kg VS/m3 day, GI decreased rapidly. This corresponding trend between FOS/TAC and GI was further investigated by the definition of the GI ratio (GIR) parameter. Comparison between GIR and FOS/TAC suggests that GI could be a suitable criterion for evaluating process stability.  相似文献   
50.
Hazard classification of waste is a necessity, but the hazard properties (named “H” and soon “HP”) are still not all defined in a practical and operational manner at EU level. Following discussion of subsequent draft proposals from the Commission there is still no final decision. Methods to implement the proposals have recently been proposed: tests methods for physical risks, test batteries for aquatic and terrestrial ecotoxicity, an analytical package for exhaustive determination of organic substances and mineral elements, surrogate methods for the speciation of mineral elements in mineral substances in waste, and calculation methods for human toxicity and ecotoxicity with M factors.In this paper the different proposed methods have been applied to a large assortment of solid and liquid wastes (>1 0 0).Data for 45 wastes – documented with extensive chemical analysis and flammability test – were assessed in terms of the different HP criteria and results were compared to LoW for lack of an independent classification. For most waste streams the classification matches with the designation provided in the LoW. This indicates that the criteria used by LoW are similar to the HP limit values.This data set showed HP 14 ‘Ecotoxic chronic’ is the most discriminating HP. All wastes classified as acute ecotoxic are also chronic ecotoxic and the assessment of acute ecotoxicity separately is therefore not needed. The high number of HP 14 classified wastes is due to the very low limit values when stringent M factors are applied to total concentrations (worst case method). With M factor set to 1 the classification method is not sufficiently discriminating between hazardous and non-hazardous materials. The second most frequent hazard is HP 7 ‘Carcinogenic’. The third most frequent hazard is HP 10 ‘Toxic for reproduction’ and the fourth most frequent hazard is HP 4 “Irritant – skin irritation and eye damage”. In a stepwise approach, it seems relevant to assess HP 14 first, then, if the waste is not classified as hazardous, to assess subsequently HP 7, HP 10 and HP 4, and then if still not classified as hazardous, to assess the remaining properties.The elements triggering the HP 14 classification in order of importance are Zn, Cu, Pb, Cr, Cd and Hg. Progress in the speciation of Zn and Cu is essential for HP 14. Organics were quantified by the proposed method (AFNOR XP X30-489) and need no speciation. Organics can contribute significantly to intrinsic toxicity in many waste materials, but they are only of minor importance for the assessment of HP 14 as the metal concentrations are the main HP 14 classifiers. Organic compounds are however responsible for other toxicological characteristics (hormone disturbance, genotoxicity, reprotoxicity…) and shall be taken into account when the waste is not HP 14 classified.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号