首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1033篇
  免费   21篇
  国内免费   49篇
安全科学   32篇
废物处理   211篇
环保管理   241篇
综合类   408篇
基础理论   45篇
环境理论   1篇
污染及防治   80篇
评价与监测   71篇
社会与环境   14篇
  2024年   2篇
  2023年   6篇
  2022年   14篇
  2021年   15篇
  2020年   31篇
  2019年   12篇
  2018年   8篇
  2017年   11篇
  2016年   20篇
  2015年   23篇
  2014年   108篇
  2013年   67篇
  2012年   32篇
  2011年   66篇
  2010年   19篇
  2009年   52篇
  2008年   43篇
  2007年   56篇
  2006年   52篇
  2005年   33篇
  2004年   40篇
  2003年   50篇
  2002年   48篇
  2001年   41篇
  2000年   46篇
  1999年   33篇
  1998年   42篇
  1997年   29篇
  1996年   25篇
  1995年   13篇
  1994年   35篇
  1993年   15篇
  1992年   5篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
  1977年   1篇
  1973年   1篇
排序方式: 共有1103条查询结果,搜索用时 31 毫秒
141.
In partnership with the US Department of Energy’s Office of Industrial Technology, Whyco Technologies, Inc., has developed an innovative perforated plating barrel used in the plating of metal parts. This new technology employs a thin-walled construction, differing from the traditional thick-wall design required to provide adequate structural integrity. The thicker walls lowered the efficiency of transferring plating solution into and out of the barrel and diminished the electrical current pushed through the holes and onto the parts being plated. By machining pockets out of the traditional thick-walled perforated structure, Whyco produced a ‘honeycomb’ of staggered cells, allowing for the greatest number of holes per open area while maintaining structural integrity. Hydrodynamic pumping occurs during barrel rotation to create greater solution transfer than in traditional barrels. The Whyco barrel has higher current density plating, which leads to faster plating cycles, reduced bath concentration, and better plating of difficult chemistries such as in alloys. This new technology has helped the company reduce energy use by 16%, eliminate more than 480 tons/year of solid waste, and reduce wastewater by more than 17 000 gallons/day. The resulting cost savings total more than $500 000 annually. The company has manufactured and sold more than 275 of these barrels to other electroplating companies that are reporting up to a 40% increase in plating productivity and similar energy and environmental impacts.  相似文献   
142.
The utilization of waste products as valuable materials was a technical imperative for waste management. In this study, the cost-effective attapulgite/carbon(APT/C) composite was developed for wastewater treatment using waste hot-pot oil as a carbon precursor through a facile one-step calcination process. The APT/C composite prepared at 300°C exhibited the excellent adsorption capacity and rapid equilibrium rate over a broad p H range for the removal of various pollutants. More importantly, the removal ratios of the composites toward Methyl Violet and tetracycline still remained 77.6% and 60.2% of the initial adsorption capacity after ten adsorption–regeneration cycles via a facile thermal regeneration strategy, respectively.Beyond all doubt, this research provided a feasible and economical way for the sustainable utilization of waste hot-pot oil in wastewater treatment, achieving the concept of disposal waste with waste and recycling.  相似文献   
143.
Environmental Management - Are societal wastes all bad? Some of them, including heat from power plants and certain organic wastes, have been demonstrated to be potentially valuable for growing...  相似文献   
144.
High-pressure, near-critical liquids were used as float-sink separation media for the microsortation of polyolefin mixtures and PET/PVC mixtures. Near-critical carbon dioxide was used for the refinement of the polyolefins, and sulfur hexafluoride was used to separate post-consumer PVC from PET. Preliminary experiments indicated that there was no overlap in the density ranges of post-consumer HDPE, LDPE and PP containers. There was no overlap in the PET and PVC densities, with the exception of a single PVC packaging material with a density in the PET range. These initial results indicated that a float-sink separation was a viable means of microsortation. Separations of 91% LDPE (1/8′ beads)/9% PP (1/8′ chopped strands) resin mixtures and mixed post-consumer polyolefin flakes were then conducted in a laboratory-scale, 1-I batch apparatus. This apparatus not only permitted the observation of the separation, but also enabled the separated fractions to be removed from the high-pressure environment. The results indicated that LDPE purity of greater than 98.9% was obtained in 3 min or less if (a) the fluid density was 0.018 g/cm3 greater than the PP density and only 0.002 g/cm3 less than the LDPE density, thereby providing the greatest buoyancy force for the removal of the PP, (b) the fluid was recirculated upward through the bed of mixed plastics, facilitating the upward movement of the PP, and (c) the loading was kept at levels below 40% by volume. HDPE purity of 99% was also attained with clean, dry, post-consumer mixed plastic flakes. The loadings for these separations were very low, however, due to the difficulty in agitating the mixed bed of plastics using fluid recirculation. An economic analysis of these microsortation processes indicated that the value of the sorted plastics relative to the mixed feed must increase by approx. $0.08/lb for the CO2-based separation and approx. $0.27/lb for the SF6-based separation to justify the implementation of these high-pressure processes.  相似文献   
145.
Corn distillers’ dry grain, corncob powder, hardwood powder, and sugar beet pulp were separately anionized by oxidation with sodium hypochlorite in aqueous solution. Solid reaction products instantly precipitated upon admixing each of the above-oxidized materials with soy protein isolate. Infrared spectra and differential scanning calorimetry supported the hypothesis that soy protein isolate complexed with all of the above-oxidized polysaccharides. Reaction products with either oxidized corn distillers’ dry grain or oxidized sugar beet pulp provided hard, brittle pellets with tensile strengths as high as 9.5 MPa, suggesting that these materials could be viable as biodegradable plastics.  相似文献   
146.
147.
A five-stage sequential leaching procedure was used to fractionate 13 heavy metals (Cd, Cu, Pb, Cr, Zn, Fe, Mn, Al, Ni, Co, As, V, Ba) and sulphur (S) in lime waste from the lime kiln at the causticizing plant of Stora Enso Oyj Veitsiluoto Pulp Mills at Kemi, Northern Finland, into the following fractions: (1) water-soluble fraction (H2O), (2) exchangeable fraction (CH3COOH), (3) easily reduced fraction (HONH3Cl), (4) oxidizable fraction (H2O2 + CH3COONH4), and (5) residual fraction (HF + HNO3 + HCl). Although metals were leachable in all fractions, the highest concentrations for most of the metals were observed in the residual fraction (stage 5). It was also notable that the total heavy metal concentrations in lime waste did not exceed the maximal allowable heavy metal concentrations for soil conditioner agents set by the ministry of the Agricultural and Forestry in Finland. The heavy metals concentrations in lime waste were also lower than the maximal allowable heavy metals concentrations of the European Union Directive 86/278/EEC on the protection of environment, and in particular of the soil, when sewage sludge is used in agriculture. The Ca concentration (420 g kg−1; d.w.) was about 262 times higher than the typical value of 1.6 g kg−1 (d.w.) in arable land in Central Finland. However, the concentration Mg (0.2 g kg−1; d.w.) in lime waste was equal to the Mg concentration in arable land in the Central Finland. The lime waste has strongly alkaline pH (12.8) and a neutralizing value (i.e. liming effect) of 47.9% expressed as Ca equivalents (d.w.). This indicates lime waste to be a potential soil conditioner and improvement as well as a pH buffer.  相似文献   
148.
The European waste sector is undergoing a period of unprecedented change driven by business consolidation, new legislation and heightened public and government scrutiny. One feature is the transition of the sector towards a process industry with increased pre-treatment of wastes prior to the disposal of residues and the co-location of technologies at single sites, often also for resource recovery and residuals management. Waste technologies such as in-vessel composting, the thermal treatment of clinical waste, the stabilisation of hazardous wastes, biomass gasification, sludge combustion and the use of wastes as fuel, present operators and regulators with new challenges as to their safe and environmentally responsible operation. A second feature of recent change is an increased regulatory emphasis on public and ecosystem health and the need for assessments of risk to and from waste installations. Public confidence in waste management, secured in part through enforcement of the planning and permitting regimes and sound operational performance, is central to establishing the infrastructure of new waste technologies. Well-informed risk management plays a critical role. We discuss recent developments in risk analysis within the sector and the future needs of risk analysis that are required to respond to the new waste and resource management agenda.  相似文献   
149.
The decomposable waste thrown into the environment can be used to produce value added bio-product which in turn reduces the production of greenhouse gas. Garbage enzyme is one such value added product produced by fermentation of organic solid waste. In the present study enzyme activity and disinfectant potential of garbage enzyme was evaluated and its influence on reduction of total solids, suspended solids and pathogens in dairy waste activated sludge were studied. The result showed the garbage enzyme possesses protease, amylase and lipase activity and reduced 37.2% of total solids, 38.6% of suspended solids and 99% of pathogens in dairy waste activated sludge. This significant result may be helpful for researchers to compare the effectiveness of earth-friendly garbage enzyme treatment of industrial sludge with various physical and chemical pre-treatment methods to improve the biogas production from the sludge digestion unit.  相似文献   
150.
Plastic lumber manufactured using post consumer waste plastic has been proposed as an acceptable material for use in the construction of docks, piers and bulkheads and is touted to outlast conventional wood products due to its strength, durability and resistance to rot. This study examines the long-term engineering properties of plastic lumber manufactured using post consumer waste plastic (TRIMAX, Ronkonkoma, NY). Plastic lumber profiles were used in the decking of a pier built in West Meadow Creek, Old Field, NY during December 1995. Samples of plastic lumber were removed from the deck of the pier periodically over a two-year period and returned to the laboratory for testing. Results of engineering tests showed the in-plane compression modulus (260±30 MPa), dimensional stability and the Shore D surface hardness (60±2) of plastic lumber removed from the pier remained similar to or greater than their pre-placement values. In contrast, significant changes in the modulus of elasticity of plastic lumber were measured with prolonged weathering. The modulus of elasticity of plastic lumber initially decreased from 1370 Pa to 750 Pa following 12 months weathering, a decrease equal to 45% of its pre-placement value and then increased during the second year to close to its initial value. The high variability in the modulus of elasticity should restrict the use of plastic lumber profiles to non-load bearing structural applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号