首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3184篇
  免费   89篇
  国内免费   194篇
安全科学   143篇
废物处理   22篇
环保管理   795篇
综合类   1276篇
基础理论   226篇
污染及防治   274篇
评价与监测   584篇
社会与环境   112篇
灾害及防治   35篇
  2024年   4篇
  2023年   43篇
  2022年   49篇
  2021年   70篇
  2020年   98篇
  2019年   55篇
  2018年   48篇
  2017年   87篇
  2016年   110篇
  2015年   124篇
  2014年   140篇
  2013年   162篇
  2012年   129篇
  2011年   240篇
  2010年   92篇
  2009年   231篇
  2008年   201篇
  2007年   204篇
  2006年   149篇
  2005年   129篇
  2004年   126篇
  2003年   117篇
  2002年   104篇
  2001年   85篇
  2000年   85篇
  1999年   79篇
  1998年   79篇
  1997年   61篇
  1996年   42篇
  1995年   52篇
  1994年   64篇
  1993年   38篇
  1992年   24篇
  1991年   19篇
  1990年   12篇
  1989年   8篇
  1988年   13篇
  1987年   7篇
  1986年   13篇
  1985年   9篇
  1984年   7篇
  1983年   3篇
  1982年   7篇
  1981年   6篇
  1980年   8篇
  1979年   11篇
  1978年   6篇
  1973年   5篇
  1969年   2篇
  1968年   2篇
排序方式: 共有3467条查询结果,搜索用时 31 毫秒
971.
The word “electrocoagulation” (EC) will be sometimes used with “electroflotation” (EF) and can be considered as the electrocoagulation/flotation (ECF) process. Through the process of electrolysis, coagulating agents such as metal hydroxides are produced. When aluminium electrodes are used, the aluminium dissolves at the anode and hydrogen gas is released at the cathode. The coagulating agent combines with the pollutants to form large size flocs. As the bubbles rise to the top of the tank they adhere to particles suspended in the water and float them to the surface. In fact, a conceptual framework of the overall ECF process is linked to coagulant generation, pollutant aggregation, and pollutant removal by flotation and settling when it has been applied efficiently to various water and wastewater treatment processes. This review paper considers a significant number of common applications of EC and ECF processes which have been published in journal and conference papers.  相似文献   
972.
Emergy Evaluation of the Natural Value of Water Resources in Chinese Rivers   总被引:1,自引:0,他引:1  
Emergy theory and method were used to evaluate the economy of China and the contributions of water resources in Chinese rivers to the real wealth of the Chinese economy. The water cycle and energy conversion were reviewed, and an emergy method for evaluating the natural value of water resources in a river watershed was developed. The indices for China calculated from the emergy evaluation were close to those of developing countries. Despite a small surplus in its balance of payments, China had a net emergy loss from its trade in 2002. The efficiency of Chinese natural resource use was still not high and did not match its economic growth rate. Furthermore, the Chinese economy placed a stress on its ecological environment and natural resources. Several indices of Chinese rivers from the emergy evaluation were close to those of average global river water. The main average indices of Chinese rivers were transformity (4.17 × 104 sej/J), emergy per volume (2.05 × 1011 sej/m3), and emdollar per volume (0.06 $/m3). The total value of all the rivers’ water made up 13.0% of the GDP of China in 2002, and that of water consumption accounted for 2.1%. The value of the water resources in the Haihe-luanhe River (11.39 × 104 sej/J) was the highest, followed by the Yellow River (10.27 × 104 sej/J), while the rivers in Southwest China had the lowest values (2.92 × 104 sej/J).  相似文献   
973.
Excessive nutrient loading (considering nitrogen and phosphorus) is a major ongoing threat to water quality and here we review the impact of nutrient discharges from wastewater treatment plants (WWTPs) to United States (U.S.) freshwater systems. While urban and agricultural land uses are significant nonpoint nutrient contributors, effluent from point sources such as WWTPs can overwhelm receiving waters, effectively dominating hydrological characteristics and regulating instream nutrient processes. Population growth, increased wastewater volumes, and sustainability of critical water resources have all been key factors influencing the extent of wastewater treatment. Reducing nutrient concentrations in wastewater is an important aspect of water quality management because excessive nutrient concentrations often prevent water bodies from meeting designated uses. WWTPs employ numerous physical, chemical, and biological methods to improve effluent water quality but nutrient removal requires advanced treatment and infrastructure that may be economically prohibitive. Therefore, effluent nutrient concentrations vary depending on the particular processes used to treat influent wastewater. Increasingly stringent regulations regarding nutrient concentrations in discharged effluent, along with greater freshwater demand in populous areas, have led to the development of extensive water recycling programs within many U.S. regions. Reuse programs provide an opportunity to reduce or eliminate direct nutrient discharges to receiving waters while allowing for the beneficial use of reclaimed water. However, nutrients in reclaimed water can still be a concern for reuse applications, such as agricultural and landscape irrigation.  相似文献   
974.
Agricultural non–point source (NPS) pollution poses a severe threat to water quality and aquatic ecosystems. In response, tremendous efforts have been directed toward reducing these pollution inputs by implementing agricultural conservation practices. Although conservation practices reduce pollution inputs from individual fields, scaling pollution control benefits up to the watershed level (i.e., improvements in stream water quality) has been a difficult challenge. This difficulty highlights the need for NPS reduction programs that focus efforts within target watersheds and at specific locations within target watersheds, with the ultimate goal of improving stream water quality. Fundamental program design features for NPS control programs—i.e., number of watersheds in the program, total watershed area, and level of effort expended within watersheds—have not been considered in any sort of formal analysis. Here, we present an optimization model that explores the programmatic and environmental trade-offs between these design choices. Across a series of annual program budgets ranging from $2 to $200 million, the optimal number of watersheds ranged from 3 to 27; optimal watershed area ranged from 29 to 214 km2; and optimal expenditure ranged from $21,000 to $35,000/km2. The optimal program configuration was highly dependent on total program budget. Based on our general findings, we delineated hydrologically complete and spatially independent watersheds ranging in area from 20 to 100 km2. These watersheds are designed to serve as implementation units for a targeted NPS pollution control program currently being developed in Wisconsin.  相似文献   
975.
建立水质自动监测系统的思考   总被引:1,自引:0,他引:1  
葛刚 《干旱环境监测》2000,14(4):226-229
结合章郭水质自动监测系统的可行性研究,在建立水质自动监测系统过程中对监测站位的选取、监测项目的选择、水质自动监测系统的组成、数据的采集与处理、系统的维护及管理、存在的问题等方面进行探讨,水质自动监测系统的建设可以弥补水质监测的不足,同时为实施总量控制及环境管理提供了可靠的依据。  相似文献   
976.
生态工程治理玄武湖水污染效果的监测与评价   总被引:10,自引:1,他引:9  
选取总磷、总氮、叶绿素a、浮游生物、浮游植物等多项环境监测指标,对利用生态工程治疗玄武湖水环境污染的效果进行了环境监测与评价。指出生态工程治理玄武湖水环境污染效果显著,经过治理使湖水中生物多样性大大增加,浮游植物大幅减少,湖水透明度增加,总磷、总氮等主要指标大幅下降,生态工程区中的水环境已从高度富营养化降到中度富营养化。  相似文献   
977.
Pollution of water bodies is one of the areas of major concern to environmentalists. Water quality is an index of health and well being of a society. Industrialization, urbanization and modern agriculture practices have direct impact on the water resources. These factors influence the water resources quantitatively and qualitatively. The study area selected were the Upper lake and Kolar reservoir of Bhopal, the state capital of Madhya Pradesh, India. The Upper lake and Kolar reservoir both are the important sources of potable water supply for the Bhopal city. The physico–chemical parameters like temperature, pH, turbidity, total hardness, alkalinity, BOD, COD, Chloride, nitrate and phosphate were studied to ascertain the drinking water quality.  相似文献   
978.
Combining genotoxicity/mutagenicity tests and physico-chemical methodologies can be useful for determining the potential genotoxic contaminants in soil samples. The aim of our study was to evaluate the genotoxicity of soil by applying an integrated physico-chemical-biological approach. Soil samples were collected at six sampling points in a Slovenian industrial and agricultural region where contamination by heavy metals and sulphur dioxide (SO2) are primarily caused by a nearby power plant. The in vitro alkaline version of the comet assay on water soil leachates was performed with Caco-2 and HepG2 cells. A parallel genotoxicity evaluation of the samples was performed by Ames test using Salmonella typhimurium and the Tradescantia micronucleus test. Pedological analyses, heavy metal content determination, and different physico-chemical analyses, were also performed utilizing standard methodology. Water leachates of soil samples were prepared according to standard methods. Since only a battery of biotests with prokaryotic and eukaryotic organisms or cells can accurately estimate the effects of (geno)toxicants in soil samples and water soil leachates, a combination of three bioassays, with cells or organisms belonging to different trophic levels, was used. Genotoxicity of all six water soil leachates was proven by the comet assay on both human cell lines, however no positive results were detected by bacterial assay, Ames test. The Tradescantia micronucleus assay showed increase in micronuclei formation for three samples. According to these results we can assume that the comet assay was the most sensitive assay, followed by the micronucleus test. The Ames test does not appear to be sensitive enough for water soil leachates genotoxicity evaluations where heavy metal contamination is anticipated.  相似文献   
979.
The European Community asks its Member States to provide a comprehensive and coherent overview of their groundwater chemical status. It is stated that simple conceptual models are necessary to allow assessments of the risks of failing to meet quality objectives. In The Netherlands two monitoring networks (one for agriculture and one for nature) are operational, providing results which can be used for an overview. Two regression models, based upon simple conceptual models, link measured nitrate concentrations to data from remote sensing images of land use, national forest inventory, national cattle inventory, fertiliser use statistics, atmospheric N deposition, soil maps and weather monitoring. The models are used to draw a nitrate leaching map and to estimate the size of the area exceeding the EU limit value in the early 1990s. The 95% confidence interval for the fraction nature and agricultural areas where the EU limit value for nitrate (50 mg/l) was exceeded amounted to 0.77–0.85 while the lower 97.5% confidence limit for the fraction agricultural area where the EU limit value was exceeded amounted to 0.94. Although the two conceptual models can be regarded as simple, the use of the models to give an overview was experienced as complex.  相似文献   
980.
Different sources of pollution in Karasu Creek were investigated to obtain the water quality and ratio of contamination in this region. To achieve the main objectives of the present study, water samples were collected from Karasu Creek, starting from flow pattern at the upstream site of Akkaya Dam to the end of the dam, crossing the place where the Creek drains into. Dissolved oxygen, electrical conductivity, temperature and maximum/minimum pH were measured systematically for 12 months in the stations, where the water samples were collected. Chemical analyses of the water samples were carried out by using Cadas 50 S brand UV spectrometer to find out the Pb, Fe, Cu, Zn, Ni, Cr, Cd, S, F and Cn concentrations. These concentration were determined in μg/lt as 80–850; 180–4,920; 10–6,100; 440–25,530; 130–2,400; 120–280; 20–150; 214,250–1,113,580; 1,560–4,270 and 40–690, respectively. To determine metal levels of the water samples, multivariate analyses (element coefficient correlation, coefficient correlation dendrogram, hierarchical cluster analysis dendrogram, model summary and ANOVA) were used. The analyses yielded highly accurate results. There were positive correlations between some elements and their possible sources were the same. The stations which resembled each other along the creek were divided into three groups. The water quality of the creek was low and had toxic qualities. Eutrophication developed in Akkaya Dam along the creek. The source of pollution was thought to be industrial and residential wastes. Absolute (0–100 m), short distance (100–500 m) and medium distance (500–2,000 m) conservation areas should be determined in pollution areas along Karasu Creek and they should be improved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号