首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1048篇
  免费   354篇
  国内免费   5篇
安全科学   146篇
废物处理   5篇
环保管理   425篇
综合类   14篇
基础理论   552篇
污染及防治   140篇
社会与环境   13篇
灾害及防治   112篇
  2021年   11篇
  2020年   10篇
  2019年   63篇
  2018年   70篇
  2017年   117篇
  2016年   97篇
  2015年   103篇
  2014年   95篇
  2013年   383篇
  2012年   73篇
  2011年   88篇
  2010年   64篇
  2009年   37篇
  2008年   45篇
  2007年   35篇
  2006年   8篇
  2005年   8篇
  2004年   9篇
  2003年   15篇
  2002年   19篇
  2001年   21篇
  2000年   20篇
  1997年   1篇
  1996年   2篇
  1993年   1篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
排序方式: 共有1407条查询结果,搜索用时 15 毫秒
51.
There has been a shift in natural resource management worldwide. This paper describes how modern institutions and policies influence management and shape access to and utilization of resources by rural communities in the Okavango Delta, Botswana. It is rooted in the framework of adaptive co‐governance within social‐ecological systems, and employs a critical literature review to analyse access to and use of natural resources in rural Botswana. Prior to the establishment of community‐based natural resource management (CBNRM) in Botswana in 1989, resource governance was dominated by strong traditional institutions that were responsible for natural resource management and decision‐making. Contemporary natural resource governance is characterized by a bureaucratic system that invariably undermines the role of traditional institutions in natural resource governance. Findings indicate that policies and regulatory instruments deny rural communities adequate access to and utilization of resources available within their immediate environment. In spite of an orientation towards an anthropocentric approach to natural resource management (as in the case of CBNRM), the current governance system continues to undermine the inclusion of local resource users as legitimate stakeholders in the decision‐making process.  相似文献   
52.
Agricultural irrigation accounts for nearly 70% of the total water use around the world. Uncertainties and climate change together exacerbate the complexity of optimal allocation of water resources for irrigation. An interval‐fuzzy two‐stage stochastic quadratic programming model is developed for determining the plans for water allocation for irrigation with maximum benefits. The model is shown to be applicable when inputs are expressed as discrete, fuzzy or random. In order to reflect the effect of marginal utility on benefit and cost, the model can also deal with nonlinearities in the objective function. Results from applying the model to a case study in the middle reaches of the Heihe River basin, China, show schemes for water allocation for irrigation of different crops in every month of the crop growth period under various flow levels are effective for achieving high economic benefits. Different climate change scenarios are used to analyze the impact of changing water requirement and water availability on irrigation water allocation. The proposed model can aid the decision maker in formulating desired irrigation water management policies in the wake of uncertainties and changing environment.  相似文献   
53.
In the Wasatch Range Metropolitan Area of Northern Utah, water management decision makers confront multiple forms of uncertainty and risk. Adapting to these uncertainties and risks is critical for maintaining the long‐term sustainability of the region's water supply. This study draws on interview data to assess the major challenges climatic and social changes pose to Utah's water future, as well as potential solutions. The study identifies the water management adaptation decision‐making space shaped by the interacting institutional, social, economic, political, and biophysical processes that enable and constrain sustainable water management. The study finds water managers and other water actors see challenges related to reallocating water, including equitable water transfers and stakeholder cooperation, addressing population growth, and locating additional water supplies, as more problematic than the challenges posed by climate change. Furthermore, there is significant disagreement between water actors over how to best adapt to both climatic and social changes. This study concludes with a discussion of the path dependencies that present challenges to adaptive water management decision making, as well as opportunities for the pursuit of a new water management paradigm based on soft‐path solutions. Such knowledge is useful for understanding the institutional and social adaptations needed for water management to successfully address future uncertainties and risks.  相似文献   
54.
Abstract: We proposed a step‐by‐step approach to quantify the sensitivity of ground‐water discharge by evapotranspiration (ET) to three categories of independent input variables. To illustrate the approach, we adopt a basic ground‐water discharge estimation model, in which the volume of ground water lost to ET was computed as the product of the ground‐water discharge rate and the associated area. The ground‐water discharge rate was assumed to equal the ET rate minus local precipitation. The objective of this study is to outline a step‐by‐step procedure to quantify the contributions from individual independent variable uncertainties to the uncertainty of total ground‐water discharge estimates; the independent variables include ET rates of individual ET units, areas associated with the ET units, and precipitation in each subbasin. The specific goal is to guide future characterization efforts by better targeting data collection for those variables most responsible for uncertainty in ground‐water discharge estimates. The influential independent variables to be included in the sensitivity analysis are first selected based on the physical characteristics and model structure. Both regression coefficients and standardized regression coefficients for the selected independent variables are calculated using the results from sampling‐based Monte Carlo simulations. Results illustrate that, while as many as 630 independent variables potentially contribute to the calculation of the total annual ground‐water discharge for the case study area, a selection of seven independent variables could be used to develop an accurate regression model, accounting for more than 96% of the total variance in ground‐water discharge. Results indicate that the variability of ET rate for moderately dense desert shrubland contributes to about 75% of the variance in the total ground‐water discharge estimates. These results point to a need to better quantify ET rates for moderately dense shrubland to reduce overall uncertainty in estimates of ground‐water discharge. While the approach proposed here uses a basic ground‐water discharge model taken from an earlier study, the procedure of quantifying uncertainty and sensitivity can be generalized to handle other types of environmental models involving large numbers of independent variables.  相似文献   
55.
Abstract: This paper investigates application of the Army Corps of Engineers’ Hydrologic Engineering Center Hydrologic Modeling System (HEC‐HMS) to a burned watershed in San Bernardino County, California. We evaluate the HEC‐HMS’ ability to simulate discharge in prefire and postfire conditions in a semi arid watershed and the necessary parameterizations for modeling hydrologic response during the immediate, and subsequent recovery, period after a wildfire. The model is applied to City Creek watershed, which was 90% burned during the Old Fire of October 2003. An optimal spatial resolution for the HEC‐HMS model was chosen based on an initial sensitivity analysis of subbasin configurations and related model performance. Five prefire storms were calibrated for the selected model resolution, defining a set of parameters that reasonably simulate prefire conditions. Six postfire storms, two from each of the following rainy (winter) seasons were then selected to simulate postfire response and evaluate relative changes in parameter values and model behavior. There were clear trends in the postfire parameters [initial abstractions (Ia), curve number (CN), and lag time] that reveal significant (and expected) changes in watershed behavior. CN returns to prefire (baseline) values by the end of Year 2, while Ia approaches baseline by the end of the third rainy season. However, lag time remains significantly lower than prefire values throughout the three‐year study period. Our results indicate that recovery of soil conditions and related runoff response is not entirely evidenced by the end of the study period (three rainy seasons postfire). Understanding the evolution of the land surface and related hydrologic properties during the highly dynamic postfire period, and accounting for these changes in model parameterizations, will allow for more accurate and reliable discharge simulations in both the immediate, and subsequent, rainy seasons following fire.  相似文献   
56.
Abstract: The hydrologic performance of DRAINMOD 5.1 was assessed for the southern Quebec region considering freezing/thawing conditions. A tile drained agricultural field in the Pike River watershed was instrumented to measure tile drainage volumes. The model was calibrated using water table depth and subsurface flow data over a two‐year period, while another two‐year dataset served to validate the model. DRAINMOD 5.1 accurately simulated the timing and magnitude of subsurface drainage events. The model also simulated the pattern of water table fluctuations with a good degree of accuracy. The R2 between the observed and simulated daily WTD for calibration was >0.78, and that for validation was 0.93. The corresponding coefficients of efficiency (E) were >0.74 and 0.31. The R2 and E values for calibration/validation of subsurface flow were 0.73/0.48 and 0.72/0.40, respectively. DRAINMOD simulated monthly subsurface flow quite accurately (E > 0.82 and R2 > 0.84). The model precisely simulated daily/monthly drain flow over the entire year, including the winter months. Thus DRAINMOD 5.1 performed well in simulating the hydrology of a cold region.  相似文献   
57.
Abstract: A present and future challenge for water resources engineers is to extend the useful life of our dams and reservoirs. Ongoing reservoir sedimentation in impoundments must be addressed; sedimentation in many reservoirs already limits project benefits and effective project life. Sustainability requires that incoming sediment be moved downstream past the impounding dam. We use Lewis and Clark Lake, the most downstream of the six Missouri River main stem reservoirs, to demonstrate how a reservoir in advanced stages of its project life could be converted to a sustainable system with local benefits exceeding costs by a factor of 1.5. Full consideration of benefits would further enhance project justification. The proposed strategy involves four phases that will take about 50 years to complete. Cost estimates for this potential project range from the quantitative to the plausible, but it is clear that the results justify a full engineering, environmental, and economic study of this model project. If implemented, the project will create scientific knowledge and develop technologies useful for achieving sustainability at many other reservoirs in the Mississippi River basin and beyond.  相似文献   
58.
59.
Mining operations result in a wide range of environmental impacts: acid mine drainage (AMD) and acid sulfate soils being among the most common. Due to their acidic pH and high soluble metal concentrations, both AMD and acid sulfate soils can severely damage the local ecosystems. Proper post‐mining management practices are necessary to control AMD‐related environmental issues. Current AMD‐impacted soil treatment technologies are rather expensive and typically not environmentally sustainable. We conducted a 60‐day bench‐scale study to evaluate the potential of a cost‐effective and environment‐friendly technology in treating AMD‐impacted soils. The metal binding and acid‐neutralizing capacity of an industrial by‐product, drinking water treatment residuals (WTRs) were used for AMD remediation. Two types of locally generated WTRs, an aluminum‐based WTR (Al‐WTR) and a lime‐based WTR (Ca‐WTR) were used. Highly acidic AMD‐impacted soil containing very high concentrations of metals and metalloids, such as iron, nickel, and arsenic, was collected from the Tab‐Simco coal mine in Carbondale, Illinois. Soil amendment using a 1:1 Al‐ and Ca‐WTR mix, applied at 5 and 10 percent rates significantly lowered the soluble and exchangeable fractions of metals in the AMD‐impacted soil, thus lowering potential metal toxicity. Soil pH increased from an extremely acidic 2.69 to a near‐neutral 6.86 standard units over the 60‐day study period. Results from this preliminary study suggest the possibility of a successful scale‐up of this innovative, cost‐effective, and environmentally sustainable technology for remediating AMD‐impacted acid sulfate soils.  相似文献   
60.
Although significant progress has been made in developing the practice of humanitarian logistics, further improvements in efficiency and effectiveness have the potential to save lives and reduce suffering. This paper explores how the military/emergency services’ concept of a common operating picture (COP) can be adapted to the humanitarian logistics context, and analyses a practical and proven approach to addressing the key challenge of inter‐agency coordination and decision‐making. Successful adaptation could provide the mechanism through which predicted and actual demands, together with the location and status of material in transit, are captured, evaluated, and presented in real time as the basis for enhanced decision‐making between actors in the humanitarian supply network. Through the introduction of a humanitarian logistics COP and its linkages to national disaster management systems, local communities and countries affected by disasters and emergencies will be better placed to oversee and manage their response activities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号