首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   345篇
  免费   33篇
  国内免费   80篇
安全科学   36篇
废物处理   3篇
环保管理   48篇
综合类   222篇
基础理论   30篇
污染及防治   32篇
评价与监测   23篇
社会与环境   29篇
灾害及防治   35篇
  2024年   2篇
  2023年   8篇
  2022年   15篇
  2021年   19篇
  2020年   22篇
  2019年   15篇
  2018年   10篇
  2017年   22篇
  2016年   21篇
  2015年   22篇
  2014年   19篇
  2013年   32篇
  2012年   26篇
  2011年   26篇
  2010年   22篇
  2009年   20篇
  2008年   19篇
  2007年   24篇
  2006年   23篇
  2005年   10篇
  2004年   12篇
  2003年   9篇
  2002年   13篇
  2001年   4篇
  2000年   7篇
  1999年   5篇
  1998年   8篇
  1997年   3篇
  1996年   2篇
  1995年   5篇
  1994年   3篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1976年   1篇
排序方式: 共有458条查询结果,搜索用时 15 毫秒
401.
Atmospheric particles(total suspended particles(TSPs); particulate matter(PM) with particle size below 10 μm, PM10; particulate matter with particle size below 2.5 μm, PM2.5)were collected and analyzed during heating and non-heating periods in Harbin. The sources of PM10 and PM2.5were identified by the chemical mass balance(CMB) receptor model.Results indicated that PM2.5/TSP was the most prevalent and PM2.5was the main component of PM210, while the presence of PM10–100was relatively weak. SO-4and NO-3concentrations were more significant than other ions during the heating period. As compared with the non-heating period, Mn, Ni, Pb, S, Si, Ti, Zn, As, Ba, Cd, Cr, Fe and K were relatively higher during the heating period. In particular, Mn, Ni, S, Si, Ti, Zn and As in PM2.5were obviously higher during the heating period. Organic carbon(OC) in the heating period was 2–5 times higher than in the non-heating period. Elemental carbon(EC) did not change much. OC/EC ratios were 8–11 during the heating period, which was much higher than in other Chinese cities(OC/EC: 4–6). Results from the CMB indicated that 11 pollution sources were identified, of which traffic, coal combustion, secondary sulfate, secondary nitrate, and secondary organic carbon made the greatest contribution. Before the heating period, dust and petrochemical industry made a larger contribution. In the heating period, coal combustion and secondary sulfate were higher. After the heating period, dust and petrochemical industry were higher. Some hazardous components in PM2.5were higher than in PM10, because PM2.5has a higher ability to absorb toxic substances. Thus PM2.5pollution is more significant regarding human health effects in the heating period.  相似文献   
402.
晋江金鸡闸断面是泉州市重要饮用水取水口断面,其水质安全对实现区域经济社会发展具有重要意义. 以晋江金鸡闸断面水文水质监测资料为基础,借助水文统计及降雨径流与面源污染关系分析,提出确定不同水平年典型污染物质量浓度年际及年内变化的方法,进而确定面源污染负荷和水质敏感期. 结果表明:从枯水年到丰水年,CODMn、NH3-N、TP的面源污染贡献率随降雨径流量的增多而增大,分别为30%~74%、53%~61%、39%~62%;ρ(NH3-N)和ρ(TP)的年均值随降雨径流量的增大而减小,ρ(CODMn)与降雨径流量关系不密切. 在丰水年、偏丰年及平水年ρ(CODMn)、ρ(NH3-N)、ρ(TP)的年均值变化均较小,而在偏枯年和枯水年变化较大;三者年内变化规律相近,ρ(NH3-N)和ρ(TP)的峰值一般出现在3月、4月,并且峰值大小与年降雨径流量呈反势,ρ(CODMn)峰值及与年降雨径流量关系不明显. 除3月、4月外,ρ(CODMn)、ρ(NH3-N)大多达到GB 3838—2002《地表水环境质量标准》Ⅱ类水质标准限值,而ρ(TP)基本达到Ⅲ类水质标准限值.   相似文献   
403.
1958—2009年松花江流域降水时空演变特征   总被引:2,自引:3,他引:2  
利用松花江流域降水资料,采用克里格(Kriging)法进行插值,用Mann-Kendall秩次相关法分析降水系列的变化趋势,用集中度和集中期分析降水量年内分配特征等,分析了流域降水特征时空变化。结果表明:①1958—2009年52 a来流域年降水呈不显著减少趋势,降水由东部向西部递减,绝大部分地区年降水呈不显著减少趋势;②年内降水不均匀,大多集中在5—9月,6—8月最为集中,汛期(6—9月)降水占全年77.65%,呈不显著减少趋势;③流域年降水集中度很大,多年均值为0.682,呈东南小西北大的特点。年降水集中期为181.90°~187.68°,最大降水一般出现在7月20—26日,集中期地域差异不大,总体呈北高南低的特点,年降水集中度减少趋势不显著,集中期呈显著减少趋势。  相似文献   
404.
为充分了解路易氏剂潜在的毒性和致畸作用,考察了其对大白鼠围产期的毒性特征,以w(路易氏剂)为0.650、0.325和0.217mg/kg作为高、中、低剂量组,从F0代鼠妊娠15d开始至哺乳28d停止,研究其对F0代母鼠及F1代仔鼠存活率、体质量、生理发育、反射行为、生殖功能的影响. 结果表明,路易氏剂对F1代仔鼠的最大无害作用剂量(NOAEL)为0.217mg/kg,最小有害作用剂量(LOAEL)为0.325mg/kg. 路易氏剂围产期施毒对母鼠及仔鼠有较明显的影响. 4种战剂(路易氏剂、二苯氯胂、苯氯乙酮和二苯氰胂)对围产期仔鼠的毒性依次为路易氏剂>二苯氯胂>苯氯乙酮,而二苯氰胂对围产期F1代仔鼠的毒性与路易氏剂没有显著区别.   相似文献   
405.
不同碳源对EBPR启动期聚磷菌的影响研究   总被引:1,自引:0,他引:1       下载免费PDF全文
杨敏  卢龙  冯涌  张强 《环境工程》2013,31(1):39-42
以实验室序批式反应器(SBR)为强化生物除磷工艺(EBPR)载体,接种具有初步除磷功能的污泥后,以乙酸∶丙酸=1∶1(按各自折算的COD计)为混合碳源(以下简称混酸),厌氧初始pH 7.6±0.1,富集聚磷菌(PAO)。启动30 d后,EBPR反应器中为PAO和聚糖菌(GAO)的混合菌属,此时从反应器中取泥样进行批式试验,分别考察乙酸、丙酸及混酸对聚磷菌的富集和厌氧释磷的影响。结果表明:在EBPR启动期内,乙酸作为单一碳源时释磷量最大,但混酸碳源释磷效率最高,最有利于PAO富集;丙酸作为单一碳源时降解率最大而释磷量最小,不适合EBPR启动期的PAO富集。  相似文献   
406.
长江,嘉陵江重庆段内污染物的停留时间模型   总被引:5,自引:0,他引:5  
从分析河流断面上的能量出发,导出一个计算污染物在河段内的停留时间模型,并对模型使用的初始条件作了较详尽的说明。  相似文献   
407.
张豪  汤洁  梁爽 《生态环境》2013,(12):1899-1903
水稻土是中国主要的耕作土壤,在陆地土壤碳循环研究中具有重要现实意义。针对吉林西部水田土壤的特征,将无机碳库纳入土壤碳库研究,以典型灌区前郭县为例,野外采集盐碱地和已开发5、15、25、35、55年的5种不同水田表层土壤,建立实验样地,在水稻生长的幼苗期、分蘖期、长穗期和结实期采集土壤样品,用TOC仪分别测试表层土壤有机碳和碳酸盐含量,分析其季节动态规律和开发年份特征。结果表明:吉林西部盐碱水田土壤有机碳呈现“减-增-减”的季节变化规律,水稻生长的幼苗期和分蘖期有机碳含量下降,长穗期含量上升,结实期含量下降,碳酸盐季节变化规律与其相反,二者季节变化呈显著负相关;经历一个生长季后,开发5、15、25、35、55年的土壤有机碳含量分别增加了2.98%、3.53%、3.66%、2.72%、2.30%,碳酸盐含量分别增加了4.07%、2.15%、1.08%、1.61%、11.36%,说明研究区水田生长期具有碳汇作用;与未开发盐碱地相比,开发的5、15、25、35、55年生长季土壤平均总碳量分别增加了89.81%、121.03%、137.22%、188.28%,有机碳含量分别增加了284.28%、392.00%、456.37%、559.08%、666.06%,碳酸盐含量分别降低了13.49%、22.84%、32.23%、43.53%、62.40%;开发年份越长,水田土壤总碳和有机碳含量越高,碳酸盐含量越低;总碳的增加来自有机碳的增加;盐碱地开发有利于土壤碳汇。水稻生长期温度和降雨量影响土壤有机碳和碳酸盐季节变化。  相似文献   
408.
超声波的空化作用能够抑制藻类生长,从保护水体生态系统以及超声波技术本身的特点考虑,低频率、低功率的超声波更适合于水体抑藻应用.实验采用自然水体混合藻种(主要由绿藻门、硅藻门、蓝藻门藻种组成),水样超声波辐照后,进行光照培养,取样检测藻类生长情况,研究了低频率、低功率超声波的抑藻效果及控制参数.结果表明,采用60 kHz、0.24 W·cm~(-2)的超声波,作用时间为1 min,抑藻效果明显,24 h培养后水样OD_400从0.25 cm~(-1)降至0.12 cm~(-1);随着超声波作用功率的增加,抑藻效果增强,但功率超过0.24W·cm~(-2),抑藻效果基本不再增加;超声波施加周期为1次·(2~4) d~(-1),可以起到持续抑藻的效果.  相似文献   
409.
文秋红  史锟 《生态环境》2005,14(5):662-667
通过在沈阳张士镉污染区按每月8日、23日左右(中国北方24节气日)采集生物量较大的芦苇Phragmites australis、稗草Echinochtoa crusgalli和藜Chenopodium进行Cd质量分数和Cd质量分数最大的时期研究。结果表明:芦苇根Cd质量分数在6月8日(芒种)达到最大值(80.63 mg.kg-1),茎叶Cd质量分数在9月8日(白露)达到最大值(39.40 mg.kg-1);藜根9月8日(白露)Cd质量分数为22.65 mg.kg-1,茎叶10月24日(霜降)Cd质量分数为12.23 mg.kg-1,都是生长时期的最大值;稗草根Cd质量分数10月8日(寒露)达到最大值(182.59 mg.kg-1),茎叶Cd质量分数在9月23日(秋分)达到最大值(37.67 mg.kg-1)。芦苇、藜和稗草根及茎叶中的Cd质量分数一般均在秋季达最大值,而且这个时期杂草的生物量也比较大,因此秋季是最佳的杂草收割季节。另外,稗草比芦苇、藜能更有效地带出土壤中的Cd。  相似文献   
410.
Volatile organic compounds at swine facilities: A critical review   总被引:3,自引:0,他引:3  
Ni JQ  Robarge WP  Xiao C  Heber AJ 《Chemosphere》2012,89(7):769-788
Volatile organic compounds (VOCs) are regulated aerial pollutants that have environmental and health concerns. Swine operations produce and emit a complex mixture of VOCs with a wide range of molecular weights and a variety of physicochemical properties. Significant progress has been made in this area since the first experiment on VOCs at a swine facility in the early 1960s. A total of 47 research institutions in 15 North American, European, and Asian countries contributed to an increasing number of scientific publications. Nearly half of the research papers were published by U.S. institutions.Investigated major VOC sources included air inside swine barns, in headspaces of manure storages and composts, in open atmosphere above swine wastewater, and surrounding swine farms. They also included liquid swine manure and wastewater, and dusts inside and outside swine barns. Most of the sample analyses have been focusing on identification of VOC compounds and their relationship with odors. More than 500 VOCs have been identified. About 60% and 10% of the studies contributed to the quantification of VOC concentrations and emissions, respectively. The largest numbers of VOC compounds with reported concentrations in a single experimental study were 82 in air, 36 in manure, and 34 in dust samples.The relatively abundant VOC compounds that were quantified in at least two independent studies included acetic acid, butanoic acid (butyric acid), dimethyl disulfide, dimethyl sulfide, iso-valeric, p-cresol, propionic acid, skatole, trimethyl amine, and valeric acid in air. They included acetic acid, p-cresol, iso-butyric acid, butyric acid, indole, phenol, propionic acid, iso-valeric acid, and skatole in manure. In dust samples, they were acetic acid, propionic acid, butyric acid, valeric acid, p-cresol, hexanal, and decanal. Swine facility VOCs were preferentially bound to smaller-size dusts.Identification and quantification of VOCs were restricted by using instruments based on gas Chromatography (GC) and liquid chromatography (LC) with different detectors most of which require time-consuming procedures to obtain results. Various methodologies and technologies in sampling, sample preparation, and sample analysis have been used. Only four publications reported using GC based analyzers and PTR-MS (proton-transfer-reaction mass spectrometry) that allowed continuous VOC measurement. Because of this, the majority of experimental studies were only performed on limited numbers of air, manure, or dust samples. Many aerial VOCs had concentrations that were too low to be identified by the GC peaks.Although VOCs emitted from swine facilities have environmental concerns, only a few studies investigated VOC emission rates, which ranged from 3.0 to 176.5 mg d−1 kg−1 pig at swine finishing barns and from 2.3 to 45.2 g d−1 m−2 at manure storages. Similar to the other pollutants, spatial and temporal variations of aerial VOC concentrations and emissions existed and were significantly affected by manure management systems, barn structural designs, and ventilation rates.Scientific research in this area has been mainly driven by odor nuisance, instead of environment or health concerns. Compared with other aerial pollutants in animal agriculture, the current scientific knowledge about VOCs at swine facilities is still very limited and far from sufficient to develop reliable emission factors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号