首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   276篇
  免费   76篇
  国内免费   397篇
安全科学   4篇
废物处理   1篇
环保管理   8篇
综合类   580篇
基础理论   38篇
污染及防治   36篇
评价与监测   77篇
社会与环境   5篇
  2024年   14篇
  2023年   56篇
  2022年   82篇
  2021年   77篇
  2020年   76篇
  2019年   61篇
  2018年   49篇
  2017年   35篇
  2016年   43篇
  2015年   58篇
  2014年   29篇
  2013年   26篇
  2012年   28篇
  2011年   17篇
  2010年   15篇
  2009年   12篇
  2008年   11篇
  2007年   12篇
  2006年   10篇
  2005年   9篇
  2004年   2篇
  2003年   3篇
  2002年   7篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
排序方式: 共有749条查询结果,搜索用时 15 毫秒
71.
阮兆元  燕鸥  王体健  王勤耕  罗干  文金科 《环境科学》2023,44(11):5933-5945
为了解南京市溧水区大气挥发性有机物(VOCs)的组分、来源及其对臭氧的贡献,2021年对区域内VOCs开展了为期1 a的走航监测,进行数据分析.结果表明,溧水区ρ(TVOC)年均值为223.45μg·m-3,其中ρ(烷烃)为49.45μg·m-3(占比22.13%),ρ[含氧(氮)VOCs]为50.63μg·m-3(占比22.66%),ρ(卤代烃)为64.73μg·m-3(占比28.95%),ρ(芳香烃)为35.46μg·m-3(占比15.87%),ρ(烯烃)为18.26μg·m-3(占比8.19%),其他为4.9μg·m-3(占比2.2%).夏季的ρ(TVOC)平均值较高,为263.75μg·m-3,冬季较低,为187.2μg·m-3,春季为246.11μg·m-3,秋季为204.77μg·m-3.日均TVOC浓度,在09:00~10:00和14...  相似文献   
72.
2018年石家庄市秋冬季典型霾污染特征   总被引:11,自引:7,他引:4  
宿文康  鲍晓磊  倪爽英  赵卫凤 《环境科学》2019,40(11):4755-4763
依托河北省灰霾污染防治重点实验室,对2018年10月31日至12月3日期间石家庄市大气PM_(2.5)的质量浓度和化学组分进行连续在线观测,解析石家庄市秋末冬初典型灰霾过程的特征.观测期间,石家庄市共发生4次霾污染过程,PM_(2.5)均为首要污染物,日均浓度最大值分别为154、228、379和223μg·m~(-3),达到重度污染甚至严重污染.PM_(2.5)主要组分为无机水溶性离子(WSII)和含碳气溶胶,两者质量浓度的平均占比分别为(60. 7±15. 6)%和(21. 6±9. 7)%.相比优良天,两者浓度分别上升了4. 4倍和3. 1倍,是霾污染形成的主要原因.WSII中NO_3~-为首要成分,SO_4~(2-)和NH_4~+次之,三者(SNA)质量浓度之和占WSII质量浓度的(91. 5±17. 3)%,污染期间SNA的暴发式增长是推高PM_(2.5)浓度的主要原因.非高湿条件下,单位质量NO_3~-和SO_4~(2-)的变化速率差异不明显,高湿条件触发SO_2的液相氧化过程后,SO_4~(2-)二次转化被显著促进.大气处于富NH_3状态,PM_(2.5)中n(NH_4~+)与n(NO_3~-+2×SO_4~(2-))的比值 1,过量NH_3加剧NO_3~-和SO_4~(2-)的转化.霾污染时段,燃煤和机动车排放的一次污染物的积累为含碳气溶胶浓度上升的主要原因,相比优良天,二次有机碳的生成受到抑制.在采暖季开始之前的两次霾污染过程,移动源为PM_(2.5)首要污染源,平均占比30. 8%和39. 8%.随着燃煤采暖污染排放的增加,燃煤源贡献逐步增高至25. 2%,攀升为首要污染源.  相似文献   
73.
臭氧已成为影响我国环境空气质量的重要污染物之一,准确解析环境臭氧及其前体物VOCs的关键源类及其贡献对于有效防控臭氧污染具有重要作用.因此,利用光化学年龄参数方法估算了青岛胶州市2021年1月1日至2月28日在线VOCs监测数据的初始浓度,矫正环境VOCs物种的光化学损耗;并利用正定矩阵因子分解(PMF)和臭氧生成潜势(OFP)模型进行了环境VOCs及其OFP来源解析研究,以期为青岛市环境臭氧污染的防控提供数据支撑.结果表明,研究期间青岛市环境ρ(TVOCs)和OFP的平均值分别为65.9μg·m-3和176.7μg·m-3;其中丙烷浓度(12.4μg·m-3)和占比(18.9%)最高,而间/对-二甲苯的OFP(24.6μg·m-3)及占比(13.9%)最高.研究期间TVOCs的初始浓度为153.1μg·m-3,其光化学损耗率达到63.8%.烯烃是光化学损耗率(92.1%)最高的VOCs物种,其中异戊二烯的光化学损耗率达到98.6%,明显高于其它VOCs物种.基于初始浓度的来源...  相似文献   
74.
为更好地识别太原市PM2.5的来源,于2022年1月采用在线多金属监测仪对太原市区PM2.5中13种金属元素(K、Ca、Ba、Cr、Mn、Fe、Cu、Ni、Zn、As、Se、Pb和Sr)小时浓度进行了监测,分析了其污染特征,采用正定矩阵因子分解(PMF)模型解析了其来源.结果表明,13种金属元素浓度之和均值为(3 901.6±2 611.2)ng·m-3,在PM2.5中平均占比为(7.1±7.7)%.Fe、Ca和K是3种主要的金属元素,浓度平均值分别为(1 319.5±1 003.5)、(1 181.0±1 241.6)和(883.3±357.3)ng·m-3.ρ[Cr(Ⅵ)](4.6ng·m-3)和ρ(As)(11.2 ng·m-3)平均值高于国家环境空气质量(GB 3095-2012)和世界卫生组织的标准值.PMF源解析结果显示:扬尘、机动车排放、不锈钢制造、生物质燃烧与垃圾焚烧、散煤燃烧和工业燃煤是PM2.5  相似文献   
75.
采集太原市城区夏季VOCs样品并分析其浓度特征,使用参数修正法得到VOCs初始浓度,分析其来源及对O3生成的贡献.结果显示:太原市城区总VOCs平均浓度为48.13 μg/m3,烷烃(25.52 μg/m3)为主要组分.VOCs浓度呈明显日变化特征,在日间(10:00~14:00)光化学产生O3的关键时段浓度最低.油品挥发、机动车排放、燃煤、植物排放与液化石油气/天燃气(LPG/NG)使用源对修正后环境VOCs的贡献分别为26.89%、25.55%、21.14%、14.99%、11.44%,对O3生成的贡献分别为21.44%、33.10%、24.07%、13.77%、7.62%.机动车为新鲜排放气团VOCs的重要来源,而油品挥发、燃煤的输送与本地积累是其他(混合、夜间与反应)气团VOCs的重要来源.机动车排放、油品挥发与燃煤为VOCs与O3生成的重要贡献源,控制此类源排放可减少太原市城区环境VOCs浓度并有效降低O3生成.  相似文献   
76.
采集并分析了武汉市机动车尾气源PM2.5样品,并于2019年10月18~27日采集了武汉市不同路边微环境(市区路边、环线路边、环境背景点)PM2.5样品并分析其化学组分特征,利用化学质量平衡模型(CMB)解析评估了机动车尾气对城市不同路边微环境PM2.5的贡献.结果表明,机动车尾气成分谱以OC和EC为主,汽油车OC质量分数约为柴油车的1.14倍,柴油车EC质量分数是汽油车的1.08倍.路边碳组分主要来源于机动车尾气,其中OC浓度在市区路边最高,EC浓度在环线路边最高;市区路边NO3-和NH4+浓度较高,与二次转化有关;环线路边Fe、Si、Al质量浓度高于市区路边.CMB来源解析结果显示,机动车尾气源是环线路边、市区路边微环境的主要来源,分担率为35.20%和38.89%,是环境背景点的2倍左右.不同路边微环境污染源贡献差异明显,与环线路边相比,市区路边机动车尾气源与二次来源均相对较高,而扬尘源贡献低于环线路边.  相似文献   
77.
为探究北京地区大气PM2.5载带金属在城区和郊区污染特征、来源及其健康风险的差异,于2017年6~11月采集海淀和大兴两地的PM2.5日样本,分析PM2.5及其载带的13种金属浓度.利用PMF源解析方法对13种金属元素来源进行分析,并采用健康风险评价方法对其中9种金属的健康危害进行评估.结果表明,城区PM2.5及Cr、Co、Mn和Ni等10种金属浓度与郊区均有显著差异(P<0.05).源解析结果发现,城区和郊区均可解释为4个源,但来源略有不同,占比亦有差异.城区的为机动车源(51.2%)、燃煤来源(19.1%)、扬尘来源(19.3%)和燃油来源(10.4%);郊区的为机动车源(47.9%)、燃煤来源(22.6%)、扬尘来源(20.2%)和电镀来源(9.3%).健康风险评价结果表明,城郊各金属HQ值均小于1,均不存在非致癌风险.城区中Ni和Pb,郊区中Cd、Co、Ni和Pb可忽略致癌风险,而城区的As(2.77×10-5)、Cd(2×10-6)、Co(1.76×10-6)和Cr(Ⅵ)(7.88×10-6),郊区的As(8.34×10-6)和Cr(Ⅵ)(4.94×10-6)的R值介于10-6与10-4之间,具有一定的致癌风险.  相似文献   
78.
The chemical characteristics, oxidative potential, and sources of PM2.5 were analyzed at the urban sites of Lahore and Peshawar, Pakistan in February 2019. Carbonaceous species, water soluble ions, and metal elements were measured to investigate the chemical composition and sources of PM2.5. The dithiothreitol (DTT) consumption rate was measured to evaluate the oxidative potential of PM2.5. Both cities showed a high exposure risk of PM2.5 regarding its oxidative potential (DTTv). Carbonaceous and some of the elemental species of PM2.5 correlated well with DTTv in both Lahore and Peshawar. Besides, the DTTv of PM2.5 in Lahore showed significant positive correlation with most of the measured water soluble ions, however, ions were DTT-inactive in Peshawar. Due to the higher proportions of carbonaceous species and metal elements, Peshawar showed higher mass-normalized DTT activity of PM2.5 compared to Lahore although the average PM2.5 concentration in Peshawar was lower. The high concentrations of toxic metals also posed serious non-carcinogenic and carcinogenic risks to the residents of both cities. Principle component analysis coupled with multiple linear regression was applied to investigate different source contributions to PM2.5 and its oxidative potential. Mixed sources of traffic and road dust resuspension and coal combustion, direct vehicle emission, and biomass burning and formation of secondary aerosol were identified as the major sources of PM2.5 in both cities. The findings of this study provide important data for evaluation of the potential health risks of PM2.5 and for formulation of efficient control strategies in major cities of Pakistan.  相似文献   
79.
PM10 samples were collected from an urban/industrial site nearby Athens, where uncontrolled burning activities occur. PAHs, monocarboxylic, dicarboxylic, hydroxycarboxylic and aromatic acids, tracers from BVOC oxidation, biomass burning tracers and bisphenol A were determined. PAH, monocarboxylic acids, biomass burning tracers and bisphenol A were increased during autumn/winter, while BSOA tracers, dicarboxylic- and hydroxycarboxylic acids during summer. Regarding aromatic acids, different sources and formation mechanisms were indicated as benzoic, phthalic and trimellitic acids were peaked during summer whereas p-toluic, isophthalic and terephthalic were more abundant during autumn/winter. The Benzo[a]pyrene-equivalent carcinogenic power, carcinogenic and mutagenic activities were calculated showing significant (p < 0.05) increases during the colder months. Palmitic, succinic and malic acids were the most abundant monocarboxylic, dicarboxylic and hydrocarboxylic acids during the entire sampling period. Isoprene oxidation was the most significant contributor to BSOA as the isoprene-SOA compounds were two times more abundant than the pinene-SOA (13.4 ± 12.3 and 6.1 ± 2.9 ng/m3, respectively). Ozone has significant impact on the formation of many studied compounds showing significant correlations with: isoprene-SOA (r = 0.77), hydrocarboxylic acids (r = 0.69), pinene-SOA (r = 0.63),dicarboxylic acids (r = 0.58), and the sum of phthalic, benzoic and trimellitic acids (r = 0.44). PCA demonstrated five factors that could explain sources including plastic enriched waste burning (30.8%), oxidation of unsaturated fatty acids (23.0%), vehicle missions and cooking (9.2%), biomass burning (7.7%) and oxidation of VOCs (5.8%). The results highlight the significant contribution of plastic waste uncontrolled burning to the overall air quality degradation.  相似文献   
80.
为研究沈阳市冬季PM2.5和水溶性离子的污染特征,使用URG-9000D在线监测系统于2018年冬季对大气颗粒物和气体组分进行连续采样.结果表明,采样期间沈阳市PM2.5的平均质量浓度为80.67 μg·m-3,总水溶性离子质量浓度变化范围为2.68~132.79 μg·m-3.与清洁天相比,污染天NO3-、SO42-和NH4+(SNA)占比明显增加,占到PM2.5的43.7%.静稳天气时SO2短时间内的迅速累积使得沈阳市冬季大气PM2.5有暴发性增长现象.Pearson相关性分析可知,SNA、Cl-与PM2.5之间的相关系数均达0.78以上,表明沈阳市冬季PM2.5的主要贡献组分为SNA和Cl-.PMF源解析表明沈阳市冬季污染物来源主要包括二次反应源、燃煤和生物质燃烧源以及扬尘源.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号