首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   1篇
  国内免费   3篇
环保管理   26篇
综合类   3篇
社会与环境   1篇
  2023年   1篇
  2022年   1篇
  2020年   2篇
  2018年   1篇
  2015年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1989年   2篇
  1987年   3篇
  1979年   1篇
  1977年   1篇
  1972年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
11.
ABSTRACT: Baseflow augmentation refers to the temporary storage of subsurface water in floodplains, streambanks, and/or stream bottoms during the wet season, either by natural or artificial means, for later release during the dry season to increase the magnitude and permanence of low flows. Management strategies for baseflow augmentation fall into the following categories: (1) range management, (2) upland vegetation management, (3) riparian vegetation management, (4) upland runoff detention and retention, and (5) the use of instream structures. The benefits of a management strategy focused on baseflow augmentation are many, including: (1) increased summer flows, (2) healthier riparian areas, (3) increased channel and bank stability, (4) decreased erosion and sediment transport, (5) improved water quality, (6) enhanced fish and wildlife habitat, (7) lower stream temperatures, and (8) improved stream aesthetics. This review has shown that baseflow augmentation has been successfully accomplished in a few documented cases. Given its clear impact on soil and water conservation, particularly in the semiarid western U.S., it appears that baseflow augmentation is a concept whose time has come. Research is needed on how to successfully integrate baseflow augmentation within comprehensive resource management strategies.  相似文献   
12.
In the northern hemisphere, summer low flows are a key attribute defining both quantity and quality of aquatic habitat. I developed one set of models for New England streams/rivers predicting July/August median flows averaged across 1985–2015 as a function of weather, slope, % imperviousness, watershed storage, glacial geology, and soils. These models performed better than most United States Geological Survey models for summer flows developed at a statewide scale. I developed a second set of models predicting interannual differences in summer flows as a function of differences in air temperature, precipitation, the North Atlantic Oscillation (NAO) index, and lagged NAO. Use of difference equations eliminated the need for transformations and accounted for serial autocorrelations at lag 1. The models were used in sequence to estimate time series for monthly low flows and for two derived flow metrics (tenth percentile [Q10] and minimum 3‐in‐5 year average flows). The first metric is commonly used in assessing risk to low‐flow conditions over time, while the second has been correlated with increased probability of localized extinctions for brook trout. The flow metrics showed increasing trends across most of New England for 1985–2015. However, application of summer flow models with average and extreme climate projections to the Taunton River, Massachusetts, a sensitive watershed undergoing rapid development, projected that low‐flow metrics will decrease over the next 50 years.  相似文献   
13.
贡嘎山森林系统小流域基流分割与降雨入渗补给计算   总被引:1,自引:0,他引:1  
利用不同的方法对贡嘎山黄崩溜沟水文站实测日径流资料进行了基流分割,并利用数理统计方法对基流指数的均值、均方差、变异系数进行了计算,并对黄崩溜沟基流过程和地表径流、基流的滞后时间进行了分析。黄崩溜沟基流分割指数为0.65~0.74,平均值为0.71;枯水期,黄崩溜沟地表径流量相对降雨量滞后时间为2.7~14.5d,平均滞后8d,基流量相对地表径流滞后0.7~3d,平均滞后1.8d;丰水期,黄崩溜沟地表径流量相对降雨量滞后时间为0.7~3.7d,平均滞后1.8d,基流量相对地表径流滞后0.9~2.6d,平均滞后1.5d;考虑流域整体,计算黄崩溜沟流域降雨入渗补给系数为0.16~0.28。研究表明:利用数字滤波法中F4方法对黄崩溜沟径流进行基流分割,其结果的稳定性与可靠性最佳;丰水期黄崩溜沟地表径流量相对降雨量滞后时间明显比枯水期短,而其基流量相对地表径流滞后时间丰水期、枯水期相差不大;对某一流域径流进行基流分割时应选取多种方法,并需要对其分割结果的稳定性与可靠性进行讨论,按照流域计算降雨入渗补给地下水补给问题应考虑流域整体,尤其是在山区。  相似文献   
14.
ABSTRACT: Environmental response to acidic deposition results from movement of water through the ecosystem. As a part of the environmental studies for acidic deposition sponsored by the U.S. Environmental Protection Agency (EPA), hydrologic classification based on regional baseflow properties was done. To obtain the amount of baseflow, a flow separation method was developed based on the division of streamflows into “baseflow” and “other” runoff sources. Because of the differences in the flow paths and exposure duration, the two components were assumed to be associated with distinct geo-chemical responses. Individual annual hydrographs were analyzed using 31 separation slopes to determine the amount of baseflow. A total of 1575 streamflow stations in the Northeastern U.S. were analyzed through the access of a long-term daily stream-flow data base. An interactive computer program was developed to obtain baseflow properties and other hydrologic characteristics of each station. The output from this analysis was used to perform cluster analysis to classify streamflow behaviors. The clustering output showed different regional boundaries than those currently used by the EPA for water quality studies.  相似文献   
15.
ABSTRACT. The role of initial baseflow, or the baseflow at the beginning of storm precipitation, in modifying mathematical rainfall-runoff relations is analyzed by using data from 95 storms over a drainage basin in Illinois. A regression model is set up with total runoff, surface runoff, baseflow runoff, and peak flow as dependent variables, and storm precipitation, initial baseflow, effective and total storm durations, and highest and lowest temperatures during the storm as independent variables. Stepwise regression analyses show that storm precipitation and initial baseflow are the most important variables for making dependent variable estimates. The standard error estimates using only storm precipitation and initial baseflow as predictors show a seasonal trend with a peak in July, August, or September. An understanding of the role of baseflow as an indicator of average soil moisture condition over the basin can be of great help in short-term reservoir regulation and flood warning.  相似文献   
16.
基于双参数递归数字滤波 (ERDF)、LOADEST模型和遗传算法,建立一种递归滤波基流负荷分割算法 (RFLSA),对千岛湖地区上梧溪流域的基流总磷 (TP) 负荷进行分割定量.结果表明:利用遗传算法对双参数滤波日尺度退水常数和最大基流指数 (BFImax) 进行同步优化,可以有效提高ERDF基流分割结果的准确性和可靠性 (NSE = 0.92, RSR = 0.29, R2 = 0.92);以此为基础建立的RFLSA能够实现上梧溪流域基流TP负荷的准确定量 (NSE = 0.79, RSR = 0.46, R2 = 0.95),可以作为流域尺度上基流非点源污染定量评价的一种有效方法;2020年11月—2021年10月,上梧溪流域以基流形式输出的TP负荷量为0.167 kg·hm-2,占总径流负荷量 (0.302 kg·hm-2) 的比例高达55.30%.基流已经成为上梧溪流域非点源TP的主要输出途径,是该地区地表河流水体一个不容忽视的重要污染源.  相似文献   
17.
非点源污染的准确定量是流域非点源污染控制和治理的基本前提和重要保障.在综合考虑基流非点源污染的前提下,对传统输出系数模型(ECM)进行优化和改进,建立以周为时间步长的输出系数模型(IECM),实现上梧溪流域不同土地利用类型地表径流非点源总氮(TN)污染更加准确的定量识别.结果表明,IECM可以有效实现该流域TN负荷的模拟定量,校准期与验证期的纳什系数(NSE)分别为0.82和0.77,R2分别为0.87和0.84.基于IECM得到的上梧溪流域2020年11月至2021年10月地表径流和基流的TN输出强度分别为5.74 kg·(hm2·a)-1和9.85 kg·(hm2·a)-1,分别占总径流负荷的36.80%和63.20%.相较于IECM,ECM由于未考虑基流对非点源污染的贡献,其估算的地表径流TN负荷量较IECM高54.21%.显然,直接将基流非点源污染归结于地表径流将导致地表径流负荷输出强度的严重高估.基于IECM计算得到的上梧溪流域水田、草地、林地、旱地和人居地的以地表径...  相似文献   
18.
ABSTRACT: The large volumes of ground water that are discharged from the Everglades toward the Miami metropolitan area have historically posed a significant environmental water supply problem. In order to analyze the effects of seepage barriers on these subsurface outflows, the analytic element modeling code GFLOW was used to construct a ground water flow model of a region that includes a portion of the Everglades along with adjacent developed areas. The hydrology of this region can be characterized by a highly transmissive surficial aquifer in hydraulic contact with wetlands and canals. Calibration of the model to both wet and dry season conditions yielded satisfactory results, and it was concluded that the analytic element method is a suitable technique for modeling ground water flow in the Everglades environment. Finally, the model was used to evaluate the potential effectiveness of a subsurface barrier approximately two miles long for increasing water levels within the adjacent fringes of the Everglades National Park. It was found that the barrier had a negligible effect on water levels due to both its relatively short length and the high transmissivity of the surficial aquifer.  相似文献   
19.
ABSTRACT: Regional average evapotranspiration estimates developed by water balance techniques are frequently used to estimate average discharge in ungaged streams. However, the lower stream size range for the validity of these techniques has not been explored. Flow records were collected and evaluated for 16 small streams in the Southern Appalachians to test whether the relationship between average discharge and drainage area in streams draining less than 200 acres was consistent with that of larger basins in the size range (> 10 square miles) typically gaged by the U.S. Geological Survey (USGS). This study was designed to evaluate predictors of average discharge in small ungaged streams for regulatory purposes, since many stream regulations, as well as recommendations for best management practices, are based on measures of stream size, including average discharge. The average discharge/drainage area relationship determined from gages on large streams held true down to the perennial flow initiation point. For the southern Appalachians, basin size corresponding to perennial flow is approximately 19 acres, ranging from 11 to 32 acres. There was a strong linear relationship (R2= 0.85) between average discharge and drainage area for all streams draining between 16 and 200 acres, and the average discharge for these streams was consistent with that predicted by the USGS Unit Area Runoff Map for Georgia. Drainage area was deemed an accurate predictor of average discharge, even in very small streams. Channel morphological features, such as active channel width, cross‐sectional area, and bankfull flow predicted from Manning's equation, were not accurate predictors of average discharge. Monthly baseflow statistics also were poor predictors of average discharge.  相似文献   
20.
Streams, in their natural state, are typically diverse and biologically productive environments. Streams subject to urbanization often experience degradation brought about by the cumulative effects of flow alteration, unsanitary discharge and channelization. One of the water quality parameters affected by urbanization is stream temperature. This study offers a model for predicting the impact of land use change on the temperature of non-regulated streams during extreme events. A stream temperature model was created by considering the gains and losses of thermal energy resulting from radiation, convection, conduction, evaporation and advection. A sensitivity analysis showed that out of 14 variables, shade/transmissivity of riparian vegetation, groundwater discharge, and stream width had the greatest influence on stream temperature. These same three variables are highly influenced by land use. Individual component models were developed to predict how urbanization changes stream width and baseflow discharge. Using 3-D computer modeling, a model was also developed to illustrate the effects of altering the extent and composition of riparian vegetation on streams with different orientations. By modeling these three variables as a function of urbanization, the results became inputs into the stream temperature model. The critical urban stream temperature model (CrUSTe), an aggregation of these four models, allows the prediction of stream temperature change as a result of amount, type and location of urbanization within a watershed. It has the potential to become a valuable tool for environmental managers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号