首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1581篇
  免费   112篇
  国内免费   154篇
安全科学   23篇
废物处理   9篇
环保管理   889篇
综合类   521篇
基础理论   86篇
污染及防治   38篇
评价与监测   78篇
社会与环境   149篇
灾害及防治   54篇
  2023年   30篇
  2022年   45篇
  2021年   33篇
  2020年   29篇
  2019年   24篇
  2018年   46篇
  2017年   60篇
  2016年   62篇
  2015年   66篇
  2014年   59篇
  2013年   68篇
  2012年   85篇
  2011年   82篇
  2010年   71篇
  2009年   75篇
  2008年   54篇
  2007年   67篇
  2006年   68篇
  2005年   63篇
  2004年   69篇
  2003年   68篇
  2002年   60篇
  2001年   42篇
  2000年   44篇
  1999年   47篇
  1998年   46篇
  1997年   30篇
  1996年   50篇
  1995年   24篇
  1994年   24篇
  1993年   25篇
  1992年   25篇
  1991年   20篇
  1990年   18篇
  1989年   8篇
  1988年   11篇
  1987年   17篇
  1986年   4篇
  1985年   9篇
  1983年   4篇
  1982年   15篇
  1981年   9篇
  1980年   19篇
  1979年   10篇
  1978年   8篇
  1976年   4篇
  1975年   8篇
  1973年   7篇
  1972年   12篇
  1971年   11篇
排序方式: 共有1847条查询结果,搜索用时 15 毫秒
141.
Changing climate and growing water demand are increasing the need for robust streamflow forecasts. Historically, operational streamflow forecasts made by the Natural Resources Conservation Service have relied on precipitation and snow water equivalent observations from Snow Telemetry (SNOTEL) sites. We investigate whether also including SNOTEL soil moisture observations improve April‐July streamflow volume forecast accuracy at 0, 1, 2, and 3‐month lead times at 12 watersheds in Utah and California. We found statistically significant improvement in 0 and 3‐month lead time accuracy in 8 of 12 watersheds and 10 of 12 watersheds for 1 and 2‐month lead times. Surprisingly, these improvements were insensitive to soil moisture metrics derived from soil physical properties. Forecasts were made with volumetric water content (VWC) averaged from October 1 to the forecast date. By including VWC at the 0‐month lead time the forecasts explained 7.3% more variability and increased the streamflow volume accuracy by 8.4% on average compared to standard forecasts that already explained an average 77% of the variability. At 1 to 3‐month lead times, the inclusion of soil moisture explained 12.3‐26.3% more variability than the standard forecast on average. Our findings indicate including soil moisture observations increased statistical streamflow forecast accuracy and thus, could potentially improve water supply reliability in regions affected by changing snowpacks.  相似文献   
142.
Snow is an important component of the hydrologic cycle for many regions worldwide. In addition to vital water resources, snowmelt can be important for forest ecosystem dynamics and flood risk. However, standard design events in the United States lack a design snowmelt event, including only precipitation events, though snowmelt has been shown to be larger than rainfall. In this article, we present a method using hourly snow water equivalent data to develop and test a function for representing the diurnal pattern of snowmelt. A two‐parameter beta distribution function is modified for the purposes of this study and found to fit the pattern of snowmelt well with a root mean squared error of 0.008. Soil moisture sensors were additionally utilized to assess the timing of the snowmelt water outflow from the base of the snowpack that supports the shape of the function, but suggests that the timing of losses recorded on snow pillows lag as much as 3 h. Further testing of the function showed the shape of the function to be accurate. The methods developed and tested in this paper can be applied for design purposes comparing snowmelt and rainfall events or to improve hydrological models investigating processes such as streamflow or groundwater recharge.  相似文献   
143.
By discharging excess stormwater at rates that more frequently exceed the critical flow for stream erosion, conventional detention basins often contribute to increased channel instability in urban and suburban systems that can be detrimental to aquatic habitat and water quality, as well as adjacent property and infrastructure. However, these ubiquitous assets, valued at approximately $600,000 per km2 in a representative suburban watershed, are ideal candidates to aid in reversing such cycles of channel degradation because improving their functionality would not necessarily require property acquisition or heavy construction. The objective of this research was to develop a simple, cost‐effective device that could be installed in detention basin outlets to reduce the erosive power of the relatively frequent storm events (~ < two‐year recurrence) and provide a passive bypass to maintain flood control performance during infrequent storms (such as the 100‐year recurrence). Results from a pilot installation show that the Detain H2O device reduced the cumulative sediment transport capacity of the preretrofit condition by greater than 40%, and contributed to reduced flashiness and prolonged baseflows in receiving streams. When scaling the strategy across a watershed, these results suggest that potential gains in water quality and stream channel stability could be achieved at costs that are orders of magnitude less than comparable benefits from newly constructed stormwater control measures.  相似文献   
144.
Vulnerability of river channels to urbanization has been lessened by the extensive construction of artificial water control improvements. The challenge, however, is that traditional engineering practices on isolated parts of a river may disturb the hydrologic continuity and interrupt the natural state of ecosystems. Taking the Xiaoqinghe River basin as a whole, we developed a river channel network design to mitigate river risks while sustaining the river in a state as natural as possible. The river channel risk from drought during low-flow periods and flood during high-flow periods as well as the potential for water diversion were articulated in detail. On the basis of the above investigation, a network with “nodes” and “edges” could be designed to relieve drought hazard and flood risk respectively. Subsequently, the shortest path algorithm in the graph theory was applied to optimize the low-flow network by searching for the shortest path. The effectiveness assessment was then performed for the low-flow and high-flow networks, respectively. For the former, the network connectedness was evaluated by calculating the “gamma index of connectivity” and “alpha index of circuitry”; for the latter, the ratio of flood-control capacity to projected flood level was devised and calculated. Results show that the design boosted network connectivity and circuitry during the low-flow periods, indicating a more fluent flow pathway, and reduced the flood risk during the high-flow periods.  相似文献   
145.
A susceptibility indexing method was developed based on vulnerability and quality indices. The contamination susceptibility index (SI) at a given location was calculated by taking the product of the vulnerability index (VI) and the quality index (QI): SI = VI × QI. This method incorporates both hydrogeological and hydrochemical data for a comprehensive index mapping. The DRASTIC index methodology was used for the hydrogeological data evaluations. The quality index calculation procedure based on a water quality classification scheme was introduced to evaluate hydrochemical data. The suggested susceptibility indexing method was applied to the Küçük Menderes river basin located in western Turkey. The susceptibility index map shows both hydrogeological and hydrochemical data related to the contamination problem including areas that should be taken into consideration during water management planning. The index map indicates that the most susceptible groundwater is located along the river channel between Kiraz and Tire towns, in the Selçuk area and along the Fertek stream channel to the north of Torbal? town. The results indicate that the incorporation of both hydrogeological and hydrochemical datasets enables more realistic evaluations than those of an individual dataset to estimate the groundwater contamination susceptibility of an aquifer. The numerical procedure applied could be extended further by including other parameters such as retardation, potential contaminant sources, etc. that affect the water quality in a given basin.  相似文献   
146.
The term “body of groundwater” represents a new administrative tool established by the water framework directive (WFD) in order to manage European groundwaters. Its practical application raises some difficulties due to unclear definitions and the large heterogeneity of European aquifers. In this work, a methodology is proposed to carry out the delineation of bodies of groundwater according to the requirements of the WFD. This methodology faces up to some of the major difficulties that can arise during the delineation, such as the identification of bodies of groundwater in multilayered aquifers, boundaries between superposed groundwater bodies, and delimitation in low permeability materials or in dismembered aquifers. In order to show its practical application, the proposed methodology is applied in a pilot Mediterranean river basin located in southern Spain. Results show that previous knowledge of the hydrogeological conditions is necessary to enable a correct delineation of groundwater bodies. Finally, alternative procedures are proposed for low permeability and small aquifers in order to reduce the number of groundwater bodies identified and simplify their overall management.  相似文献   
147.
Lakes are dominant landforms in the National Petroleum Reserve Alaska (NPRA) as well as important social and ecological resources. Of recent importance is the management of these freshwater ecosystems because lakes deeper than maximum ice thickness provide an important and often sole source of liquid water for aquatic biota, villages, and industry during winter. To better understand seasonal and annual hydrodynamics in the context of lake morphometry, we analyzed lakes in two adjacent areas where winter water use is expected to increase in the near future because of industrial expansion. Landsat Thematic Mapper and Enhanced Thematic Mapper Plus imagery acquired between 1985 and 2007 were analyzed and compared with climate data to understand interannual variability. Measured changes in lake area extent varied by 0.6% and were significantly correlated to total precipitation in the preceding 12 months (p < 0.05). Using this relation, the modeled lake area extent from 1985 to 2007 showed no long-term trends. In addition, high-resolution aerial photography, bathymetric surveys, water-level monitoring, and lake-ice thickness measurements and growth models were used to better understand seasonal hydrodynamics, surface area-to-volume relations, winter water availability, and more permanent changes related to geomorphic change. Together, these results describe how lakes vary seasonally and annually in two critical areas of the NPRA and provide simple models to help better predict variation in lake-water supply. Our findings suggest that both overestimation and underestimation of actual available winter water volume may occur regularly, and this understanding may help better inform management strategies as future resource use expands in the NPRA.  相似文献   
148.
基于水质的水资源模型与水质经济学初探   总被引:1,自引:0,他引:1  
在对传统的以水量为核心的水资源模型理论与实践矛盾的分析基础上,阐述了水资源社会及自然循环规律,提出城市-流域系统中水资源利用的水质自然与人工再生过程和自然、人工修复的双要素.提出水质再生和水量循环的水资源模型及其假设和约束条件,确定了模型适用的边际条件和范围,据此进一步辨析了城市污水回用与再生水的异同,将再生水置于流域尺度的城市群上下游用户层面,提出污水回用(包括中水利用)是降低需求,再生水是增加总量的基本结论.在以水质为核心的水资源模型基础上,对现有水资源经济学定义进行了修正和补充,提出了水质经济学的基础概念,并讨论了水质经济学指导下的供水服务和价格模型结构,重新定位了再生水的战略并提出以流域水体的净化成本和人工水质改善成本共同形成的全成本高低来表征流域水资源短缺程度的缺水等级划分新思路.  相似文献   
149.
结合模糊优选理论和灰色关联分析方法,提出灰色模糊综合评价法,该方法将灰色关联分析作为优属度确定的隶属度计算方法;提出理想环境序列建立遵循的原则,引入梯形模糊数实现定性指标量化并采用变异系数法确定评价指标权重.应用灰色模糊综合评价法对黄河流域河段水电规划的高坝方案和多级开发方案进行了比选研究,计算了两个方案的优属度及其开发性因子、稳定性因子、保护性因子、经济活力因子、社会可接受因子、环境风险因子等6个指标层优属度,结果表明,多级开发方案总体优于高坝方案;多级开发方案的保护性远好于高坝开发方案,而高坝方案的开发性略好于多级开发方案,稳定性、经济活力、社会可接受、环境风险等因子两种方案比较接近.评价结果与流域实际情况比较符合,证明该方法是一种有效的方法.  相似文献   
150.
Between the tenth and twentieth century the population of Paris city increased from a few thousand to near 10 million inhabitants. In response to the growing urban demand during this period, the agrarian systems of the surrounding rural areas tremendously increased their potential for commercial export of agricultural products, made possible by a surplus of agricultural production over local consumption by humans and livestock in these areas. Expressed in terms of nitrogen, the potential for export increased from about 60 kg N/km2/year of rural territory in the Middle Ages, to more than 5,000 kg N/km2/year from modern agriculture. As a result of the balance between urban population growth and rural productivity, the rural area required to supply Paris (i.e. its food-print) did not change substantially for several centuries, remaining at the size of the Seine watershed surrounding the city (around 60,000 km2). The theoretical estimate of the size of the supplying hinterland at the end of the eighteenth century is confirmed by the figures deduced from the analysis of the historical city toll data (octroi). During the second half of the twentieth century, the ‘food-print’ of Paris reduced in size, owing to an unprecedented increase in the potential for commercial export associated with modern agricultural systems based on chemical N fertilization. We argue that analysing the capacity of territories to satisfy the demand for nitrogen-containing food products of local or distant urban population and markets might provide new and useful insights when assessing world food resource allocation in the context of increasing population and urbanization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号