首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   4篇
  国内免费   21篇
安全科学   3篇
环保管理   13篇
综合类   49篇
基础理论   4篇
污染及防治   11篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2017年   3篇
  2016年   3篇
  2015年   4篇
  2014年   3篇
  2013年   4篇
  2012年   8篇
  2011年   9篇
  2010年   4篇
  2009年   6篇
  2008年   3篇
  2007年   5篇
  2006年   9篇
  2005年   3篇
  2004年   4篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有80条查询结果,搜索用时 15 毫秒
31.
为了探究氧化与还原预处理对氧化-还原联合技术修复硝基苯污染地下水的影响,选取2,4-DNT(2,4-二硝基甲苯)为研究对象,构建过硫酸盐/铁炭修复技术体系,分别设置2个试验槽,一个试验槽以过硫酸盐作为氧化预处理联合以铁炭作为还原后处理,另一个试验槽以铁炭作为还原预处理联合以过硫酸盐作为氧化后处理,对比研究构建的氧化-还原联合系统中不同氧化与还原预处理方式对2,4-DNT去除机制的影响.结果表明:①过硫酸盐氧化材料填充位置显著影响试验槽pH和ORP(氧化还原电位)的变化,在运行周期5 PV(PV为孔隙体积,1 PV时间约为4 h)内,pH可显著增至11左右,ORP值达到最高.②在运行周期5 PV内,氧化填充层S2O82-浓度和还原填充层Fe2+浓度均显著降低.③在运行周期5 PV内,随运行周期的增加,以过硫酸盐作为氧化预处理联合以铁炭作为还原后处理的协同技术体系对2,4-DNT的去除效果显著降低,以铁炭作为还原预处理联合以过硫酸盐作为氧化后处理的协同技术体系对2,4-DNT的去除率维持在100%.④通过液相-质谱联用技术,识别构建的氧化-还原联合技术体系内2,4-DNT降解的主要中间产物,同时结合铁炭微电解还原机制和过硫酸盐氧化机制提出了2,4-DNT协同处理机制及其可能的降解路径.研究显示,还原预处理更有利于氧化-还原联合技术对地下水中2,4-DNT的去除,可为有效处理硝基苯化合物污染地下水提供理论支撑.   相似文献   
32.
In this study, landfill leachate with and without pre-treatment was co-treated with municipal wastewater at different mixing ratios. The leachate pre-treatment was achieved by air stripping to removal ammonia. The objective of this study was to investigate the effect of landfill leachate on nutrient removal of the wastewater treatment process. It was demonstrated that when landfill leachate was co-treated with municipal wastewater, the high ammonia concentration in the leachate did not have a negative impact on the nitrification. The system was able to adapt to the environment and was able to improve nitrification capacity. The readily biodegradable portion of chemical oxygen demand (COD) in the leachate was utilized by the system to improve phosphorus and nitrate removal. However, this portion was small and majority of the COD ended up in the effluent thereby decreased the quality of the effluent. The study showed that the 2.5% mixing ratio of leachate with wastewater improved the overall biological nutrient removal process of the system without compromising the COD removal efficiency.  相似文献   
33.
34.
采用"水解酸化—复合厌氧—流离生物床—臭氧—三相生物流化床"工艺对维生素类制药废水处理后的出水进行深度处理。由于废水的可生化性极差,将其与生活污水混合后,BOD/COD值由0.05提高到0.18。中试试验结果表明,利用水解酸化和臭氧氧化对废水可生化性进行改善,可使COD和氨氮的去除率分别达到80%和90%以上。出水COD和氨氮完全达到GB18918—2002《城镇污水处理厂污染物排放标准》的一级A标准要求。  相似文献   
35.
国内给水厂常规工艺改造的必要性和措施   总被引:1,自引:0,他引:1  
针对目前城市给水厂水质现状与存在问题进行讨论,分析现有常规工艺改造的主要措施,阐明我国给水厂常规工艺改造的必要性。  相似文献   
36.
通过乙醛酸与壳聚糖形成西佛碱,用硼氢化钠还原制备N位取代的羧甲基壳聚糖,采用FT-IR、X-ray、NMR分析手段对分子结构进行表征。吸湿保湿性能研究发现取代度较低的N-羧甲基壳聚糖吸湿性能较好,保湿性能随着羧甲基取代度的增加而增强。通过羟基磷灰石、骨胶原与N-羧甲基壳聚糖制备了新型的复合生物材料,与没有添加N-羧甲基壳聚糖的复合材料相比较,发现具有良好的机械性能和溶涨性能。  相似文献   
37.
采用电Fenton法预处理染料废水,对影响COD及色度去除率的各种因素,包括内电解反应的初始pH值、铁的投加量、铁炭投加比,Fenton试剂氧化处理过程中初始pH值、H2O2的投加量及投加方式、反应时间等进行了研究。结果表明,内电解反应的最佳条件为:pH值为3.0,铁的投加量为25g/L,Fe/C为1:1.3;Fenton试剂氧化处理染料废水的最佳条件为:H2O2投加量为30mmol/L,pH值为内电解出水pH值(pH值为4.0左右),反应时间为50min。COD去除率可达58%,色度去除率可达95%以上。  相似文献   
38.
试验研究了不同污泥预处理方法对微生物絮凝剂的制备及其絮凝性能的影响.结果表明,污泥经碱热预处理后释放的有机物质量最大,SCOD/TCOD可达到0.56.以碱热预处理污泥作为基质制备的微生物絮凝剂,其产量为2.3 g·L-1,高于热预处理的1.6 g·L-1,酸热预处理的0.6 g·L-1,以及未接种污泥絮凝剂的18 mg·L-1.采用响应面分析法对碱热预处理污泥制备的微生物絮凝剂与PAM复配改善污泥脱水的过程进行了优化,实验分别拟合了关于污泥比阻(SRF)和干污泥量(DS)的二次模型,决定系数(R2)分别为0.9057和0.9171,表明拟合情况良好.实验中最佳的污泥脱水条件为微生物絮凝剂投加量12.6 g·kg-1,PAM投加量1.0 g·kg-1,Ca Cl2投加量59.7 mg·L-1,p H值6.7,搅拌速度185r·min-1.在此条件下,DS和SRF分别为29.1%和2.2×1012m·kg-1,表明碱热预处理污泥制备的微生物絮凝剂与PAM的联合使用有助于改善污泥脱水性能.  相似文献   
39.
化工产业是天津滨海新区重要的支柱产业,该行业废水因污染种类复杂,具有高盐、高毒、难降解等特点,是滨海新区污染物控制的主要威胁。通过对滨海某化工区实际废水进行几种主流预处理技术及其组合工艺的研究,明晰了其在实验条件下各自的特点,验证了其实际处理效果,进一步掌握了其反应过程中的特性,为研究后续的示范工程应用及大规模推广打下基础。实验表明,制药废水经内电解处理后毒性削减率最高可达到46%,对化学合成废水有较好的去毒效果,该技术可有效地提高制药废水的可生化性;光催化氧化对苯胺和氯苯的最佳降解条件分别是15 g/L TiO(23 h)及17.5 g/L TiO2;负载型纳米铁和纳米四氧化三铁催化剂分别适合极酸和中性、偏碱性条件,催化效率高,COD去除效果好。  相似文献   
40.
Fenton试剂预处理高浓度丁腈胶乳生产废水   总被引:1,自引:1,他引:0  
采用Fenton试剂预处理高浓度丁腈胶乳生产废水,确定最佳操作条件为:[H2O2]= 2 664 mg/L,[Fe2 ]=219 mg/L,初始pH=5.0,25 ℃下反应60 min,此条件下废水COD去除率可达80%以上.经正交试验得出各因素对废水COD去除率的影响顺序为:pH>[H2O2]>[Fe2 ]>反应时间.动力学研究表明,在此最佳操作条件下,反应近似符合一级反应动力学,动力学方程ln(C0/C)=0.018 7t 0.783 1,反应速率常数k=0.018 7 min-1,半衰期t 1/2=37.1 min.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号