首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1581篇
  免费   145篇
  国内免费   139篇
安全科学   210篇
废物处理   31篇
环保管理   760篇
综合类   303篇
基础理论   272篇
污染及防治   135篇
评价与监测   81篇
社会与环境   46篇
灾害及防治   27篇
  2023年   22篇
  2022年   26篇
  2021年   44篇
  2020年   53篇
  2019年   51篇
  2018年   28篇
  2017年   56篇
  2016年   64篇
  2015年   73篇
  2014年   68篇
  2013年   78篇
  2012年   64篇
  2011年   96篇
  2010年   56篇
  2009年   122篇
  2008年   77篇
  2007年   73篇
  2006年   62篇
  2005年   78篇
  2004年   56篇
  2003年   67篇
  2002年   60篇
  2001年   48篇
  2000年   61篇
  1999年   51篇
  1998年   43篇
  1997年   25篇
  1996年   38篇
  1995年   24篇
  1994年   19篇
  1993年   17篇
  1992年   13篇
  1991年   11篇
  1990年   9篇
  1989年   15篇
  1988年   11篇
  1987年   9篇
  1986年   6篇
  1985年   7篇
  1984年   5篇
  1983年   5篇
  1982年   10篇
  1981年   9篇
  1980年   13篇
  1979年   15篇
  1978年   11篇
  1977年   4篇
  1975年   2篇
  1974年   2篇
  1970年   2篇
排序方式: 共有1865条查询结果,搜索用时 0 毫秒
101.
This study explores the viability of using simulated monthly runoff as a proxy for landscape‐scale surface‐depression storage processes simulated by the United States Geological Survey’s National Hydrologic Model (NHM) infrastructure across the conterminous United States (CONUS). Two different temporal resolution model codes (daily and monthly) were run in the NHM with the same spatial discretization. Simulated values of daily surface‐depression storage (treated as a decimal fraction of maximum volume) as computed by the daily Precipitation‐Runoff Modeling System (NHM‐PRMS) and normalized runoff (0 to 1) as computed by the Monthly Water Balance Model (NHM‐MWBM) were aggregated to monthly and annual values for each hydrologic response unit (HRU) in the CONUS geospatial fabric (HRU; n = 109,951) and analyzed using Spearman’s rank correlation test. Correlations between simulated runoff and surface‐depression storage aggregated to monthly and annual values were compared to identify where which time scale had relatively higher correlation values across the CONUS. Results show Spearman’s rank values >0.75 (highly correlated) for the monthly time scale in 28,279 HRUs (53.35%) compared to the annual time scale in 41,655 HRUs (78.58%). The geographic distribution of HRUs with highly correlated monthly values show areas where surface‐depression storage features are known to be common (e.g., Prairie Pothole Region, Florida).  相似文献   
102.
Estuarine ecosystems are largely influenced by watersheds directly connected to them. In the Mobile Bay, Alabama watersheds we examined the effect of land cover and land use (LCLU) changes on discharge rate, water properties, and submerged aquatic vegetation, including freshwater macrophytes and seagrasses, throughout the estuary. LCLU scenarios from 1948, 1992, 2001, and 2030 were used to influence watershed and hydrodynamic models and evaluate the impact of LCLU change on shallow aquatic ecosystems. Overall, our modeling results found that LCLU changes increased freshwater flows into Mobile Bay altering temperature, salinity, and total suspended sediments (TSS). Increased urban land uses coupled with decreased agricultural/pasture lands reduced TSS in the water column. However, increased urbanization or agricultural/pasture land coupled with decreased forest land resulted in higher TSS concentrations. Higher sediment loads were usually strongly correlated with higher TSS levels, except in areas where a large extent of wetlands retained sediment discharged during rainfall events. The modeling results indicated improved water clarity in the shallow aquatic regions of Mississippi Sound and degraded water clarity in the Wolf Bay estuary. This integrated modeling approach will provide new knowledge and tools for coastal resource managers to manage shallow aquatic habitats that provide critical ecosystem services.  相似文献   
103.
The Storm Water Management Model was used to simulate runoff and nutrient export from a low impact development (LID) watershed and a watershed using traditional runoff controls. Predictions were compared to observed values. Uncalibrated simulations underpredicted weekly runoff volume and average peak flow rates from the multiple subcatchment LID watershed by over 80%; the single subcatchment traditional watershed had better predictions. Saturated hydraulic conductivity, Manning's n for swales, and initial soil moisture deficit were sensitive parameters. After calibration, prediction of total weekly runoff volume for the LID and traditional watersheds improved to within 12 and 5% of observed values, respectively. For the validation period, predicted total weekly runoff volumes for the LID and traditional watersheds were within 6 and 2% of observed values, respectively. Water quality simulation was less successful, Nash–Sutcliffe coefficients >0.5 for both calibration and validation periods were only achieved for prediction of total nitrogen export from the LID watershed. Simulation of a 100‐year, 24‐h storm resulted in a runoff coefficient of 0.46 for the LID watershed and 0.59 for the traditional watershed. Results suggest either calibration is needed to improve predictions for LID watersheds or expanded look‐up tables for Green–Ampt infiltration parameter values that account for compaction of urban soil and antecedent conditions are needed.  相似文献   
104.
Abstract: Assessment tools to evaluate phosphorus loss from agricultural lands allow conservation planners to evaluate the impact of management decisions on water quality. Available tools to predict phosphorus loss from agricultural fields are either: (1) qualitative indices with limited applicability to address offsite water quality standards, or (2) models which are prohibitively complex for application by most conservation planners. The purpose of this research was to develop a simple interface for a comprehensive hydrologic/water quality model to allow its usage by farmers and conservation planners. The Pasture Phosphorus Management (PPM) Calculator was developed to predict average annual phosphorus (P) losses from pastures under a variety of field conditions and management options. PPM Calculator is a vastly simplified interface for the Soil and Water Assessment Tool (SWAT) model that requires no knowledge of SWAT by the user. PPM Calculator was validated using 33 months of data on four pasture fields in northwestern Arkansas. This tool has been extensively applied in the Lake Eucha/Spavinaw Basin in northeastern Oklahoma and northwestern Arkansas. PPM Calculator allows conservation planners to take advantage of the predictive capacity of a comprehensive hydrologic water quality model typically reserved for use by hydrologists and engineers. This research demonstrates the applicability of existing water quality models in the development of user friendly P management tools.  相似文献   
105.
To assess historical loads of nitrogen (N), phosphorus (P), and suspended sediment (SS) from the nontidal Chesapeake Bay watershed (NTCBW), we analyzed decadal seasonal trends of flow‐normalized loads at the fall‐line of nine major rivers that account for >90% of NTCBW flow. Evaluations of loads by season revealed N, P, and SS load magnitudes have been highest in January‐March and lowest in July‐September, but the temporal trends have followed similar decadal‐scale patterns in all seasons, with notable exceptions. Generally, total N (TN) load has dropped since the late 1980s, but particulate nutrients and SS have risen since the mid‐1990s. The majority of these rises were from Susquehanna River and relate to diminished net trapping at the Conowingo Reservoir. Substantial rises in SS were also observed, however, in other rivers. Moreover, the summed rise in particulate P load from other rivers is of similar magnitude as from Susquehanna. Dissolved nutrient loads have dropped in the upland (Piedmont and above) rivers, but risen in two small rivers in the Coastal Plain affected by lagged groundwater input. In addition, analysis of fractional contributions revealed consistent N trends across the upland watersheds. Finally, total N:total P ratios have declined in most rivers, suggesting the potential for changes in nutrient limitation. Overall, this integrated study of historical data highlights the value of maintaining long‐term monitoring at multiple watershed locations.  相似文献   
106.
Accurate spatial representation of climatic patterns is often a challenge in modeling biophysical processes at the watershed scale, especially where the representation of a spatial gradient in rainfall is not sufficiently captured by the number of weather stations. The spatial rainfall generator (SRGEN) is developed as an extension of the “weather generator” (WXGEN), a component of the Agricultural Policy/Environmental eXtender (APEX) model. SRGEN generates spatially distributed daily rainfall using monthly weather statistics available at multiple locations in a watershed. The spatial rainfall generator as incorporated in APEX is tested on the Cowhouse watershed (1,178 km2) in central Texas. The watershed presented a significant spatial rainfall gradient of 2.9 mm/km in the lateral (north‐south) directions based on four rainfall gages. A comparative analysis between SRGEN and WXGEN indicates that SRGEN performs well (PBIAS = 2.40%). Good results were obtained from APEX for streamflow (NSE = 0.99, PBIAS = 8.34%) and NO3‐N and soluble P loads (PBIAS ≈ 6.00% for each, respectively). However, APEX underpredicted sediment yield and organic N and P loads (PBIAS: 24.75‐27.90%) with SRGEN, although its uncertainty in output was lower than WXGEN results (PBIAS: ?13.02 to ?46.13%). The overall improvement achieved in rainfall generation by SRGEN is demonstrated to be effective in the improving model performance on flow and water quality output.  相似文献   
107.
Adaptive management: Promises and pitfalls   总被引:3,自引:1,他引:3  
Proponents of the scientific adaptive management approach argue that it increases knowledge acquisition rates, enhances information flow among policy actors, and provides opportunities for creating shared understandings. However, evidence from efforts to implement the approach in New Brunswick, British Columbia, Canada, and the Columbia River Basin indicates that these promises have not been met. The data show that scientific adaptive management relies excessively on the use of linear systems models, discounts nonscientific forms of knowledge, and pays inadequate attention to policy processes that promote the development of shared understandings among diverse stakeholders. To be effective, new adaptive management efforts will need to incorporate knowledge from multiple sources, make use of multiple systems models, and support new forms of cooperation among stakeholders.  相似文献   
108.
ABSTRACT: Autoregressive moving average (ABMA) models have been applied to study the flow series of the karstic springs of La Villa, Fuente Mayor (Spain), and Aliou (France). The theoretical meaning of the parameters involved in the model upon applying it to a simplified scheme of the emptying of a karstic aquifer is first analyzed. The types of transformations necessary to apply these models to the flow series that lack normality and have strong periodic components are also indicated, as are the advantages of this type of model and the physical significance of the parameters obtained, with respect to the standpoint of hydraulics, ranging from rather homogeneous aquifers (La Villa) to extremely karstic (Aliou), including aquifers with intermediate characteristics (Fuente Mayor).  相似文献   
109.
针对北斗导航终端设备开展传统可靠性试验时间长、成本高,难以实现在短期内完成高可靠性指标考核的现状,借鉴加速试验建模技术和相关标准的加速模型参数,进行北斗导航整机可靠性加速建模,设计加速试验剖面和方案,预先评估出北斗导航终端设备的加速因子,通过一组样品即可完成北斗导航的加速试验,实现对北斗导航终端设备高可靠性指标的快速评估。  相似文献   
110.
Generally, one expects evapotranspiration (ET) maps derived from optical/thermal Landsat and MODIS satellite imagery to improve decision support tools and lead to superior decisions regarding water resources management. However, there is lack of supportive evidence to accept or reject this expectation. We “benchmark” three existing hydrologic decision support tools with the following benchmarks: annual ET for the ET Toolbox developed by the United States Bureau of Reclamation, predicted rainfall‐runoff hydrographs for the Gridded Surface/Subsurface Hydrologic Analysis model developed by the U.S. Army Corps of Engineers, and the average annual groundwater recharge for the Distributed Parameter Watershed Model used by Daniel B. Stephens & Associates. The conclusion of this benchmark study is that the use of NASA/USGS optical/thermal satellite imagery can considerably improve hydrologic decision support tools compared to their traditional implementations. The benefits of improved decision making, resulting from more accurate results of hydrologic support systems using optical/thermal satellite imagery, should substantially exceed the costs for acquiring such imagery and implementing the remote sensing algorithms. In fact, the value of reduced error in estimating average annual groundwater recharge in the San Gabriel Mountains, California alone, in terms of value of water, may be as large as $1 billion, more than sufficient to pay for one new Landsat satellite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号