全文获取类型
收费全文 | 1581篇 |
免费 | 145篇 |
国内免费 | 139篇 |
专业分类
安全科学 | 210篇 |
废物处理 | 31篇 |
环保管理 | 760篇 |
综合类 | 303篇 |
基础理论 | 272篇 |
污染及防治 | 135篇 |
评价与监测 | 81篇 |
社会与环境 | 46篇 |
灾害及防治 | 27篇 |
出版年
2023年 | 22篇 |
2022年 | 26篇 |
2021年 | 44篇 |
2020年 | 53篇 |
2019年 | 51篇 |
2018年 | 28篇 |
2017年 | 56篇 |
2016年 | 64篇 |
2015年 | 73篇 |
2014年 | 68篇 |
2013年 | 78篇 |
2012年 | 64篇 |
2011年 | 96篇 |
2010年 | 56篇 |
2009年 | 122篇 |
2008年 | 77篇 |
2007年 | 73篇 |
2006年 | 62篇 |
2005年 | 78篇 |
2004年 | 56篇 |
2003年 | 67篇 |
2002年 | 60篇 |
2001年 | 48篇 |
2000年 | 61篇 |
1999年 | 51篇 |
1998年 | 43篇 |
1997年 | 25篇 |
1996年 | 38篇 |
1995年 | 24篇 |
1994年 | 19篇 |
1993年 | 17篇 |
1992年 | 13篇 |
1991年 | 11篇 |
1990年 | 9篇 |
1989年 | 15篇 |
1988年 | 11篇 |
1987年 | 9篇 |
1986年 | 6篇 |
1985年 | 7篇 |
1984年 | 5篇 |
1983年 | 5篇 |
1982年 | 10篇 |
1981年 | 9篇 |
1980年 | 13篇 |
1979年 | 15篇 |
1978年 | 11篇 |
1977年 | 4篇 |
1975年 | 2篇 |
1974年 | 2篇 |
1970年 | 2篇 |
排序方式: 共有1865条查询结果,搜索用时 15 毫秒
41.
The increasing use of the landscape by humans has led to important diminutions of natural surfaces. The remaining patches
of wild habitat are small and isolated from each other among a matrix of inhospitable land-uses. This habitat fragmentation,
by disabling population movements and stopping their spread to new habitats, is a major threat to the survival of numerous
plant and animal species. We developed a general model, adaptable for specific species, capable of identifying suitable habitat
patches within fragmented landscapes and investigating the capacity of populations to move between these patches. This approach
combines GIS analysis of a landscape, with spatial dynamic modeling. Suitable habitat is identified using a threshold area
to perimeter ratio. Potential movement pathways of species between habitat patches are modeled using a cellular automaton.
Habitat connectivity is estimated by overlaying habitat patches with movement pathways. The maximum potential population is
calculated within and between connected habitat patches and potential risk of inbreeding within meta-populations is considered.
The model was tested on a sample map and applied to scenario maps of predicted land-use change in the Peoria Tri-county region
(IL). It (1) showed area of natural area alone was insufficient to estimate the consequences on animal populations; (2) underscored
the necessity to use approaches investigating the effect of land-use change spatially through the landscape and the importance
of considering species-specific life history characteristics; and (3) highlighted the model's potential utility as an indicator
of species likelihood to be affected negatively by land-use scenarios and therefore requiring detailed investigation. 相似文献
42.
Assessing land use impacts on flood processes in complex terrain by using GIS and modeling approach 总被引:1,自引:0,他引:1
Y. B. Liu F. De Smedt L. Hoffmann L. Pfister 《Environmental Modeling and Assessment》2005,9(4):227-235
A distributed hydrologic modeling and GIS approach is applied for the assessment of land use impact in the Steinsel sub-basin, Alzette, Grand-Duchy of Luxembourg. The assessment focuses on the runoff contributions from different land use classes and the potential impact of land use changes on runoff generation. The results show that the direct runoff from urban areas is dominant for a flood event compared with runoff from other land use areas in this catchment, and tends to increase for small floods and for the dry season floods, whereas the interflow from forested, pasture and agricultural field areas contributes to the recession flow. Significant variations in flood volume, peak discharge, time to the peak, etc., are found from the model simulation based on the three hypothetical land use change scenarios. 相似文献
43.
Nicolas Lamouroux Hervé Pella Ton H. Snelder Eric Sauquet Jérome Lejot Ude Shankar 《Journal of the American Water Resources Association》2014,50(1):1-13
Spatially comprehensive estimates of the physical characteristics of river segments over large areas are required in many large‐scale analyses of river systems and for the management of multiple basins. Remote sensing and modeling are often used to estimate river characteristics over large areas, but the uncertainties associated with these estimates and their dependence on the physical characteristics of the segments and their catchments are seldom quantified. Using test data with varying degrees of independence, we derived analytical models of the uncertainty associated with estimates of upstream catchment area (CA), segment slope, and mean annual discharge for all river segments of a digital representation of the hydrographic network of France. Although there were strong relationships between our test data and estimates at the scale of France, there were also large relative local uncertainties, which varied with the physical characteristics of the segments and their catchments. Discharge and CA were relatively uncertain where discharge was low and catchments were small. Discharge uncertainty also increased in catchments with large rainfall events and low minimum temperature. The uncertainty of segment slope was strongly related to segment length. Our uncertainty models were consistent across large regions of France, suggesting some degree of generality. Their analytical formulation should facilitate their use in large‐scale ecological studies and simulation models. 相似文献
44.
Contamination of groundwater by agrochemicals is now widely recognized as an extremely important environmental problem. Modern agricultural practices involve the combined use of irrigation with the application of large amounts of agrochemicals to maximize crop yield. Due to flood irrigation and natural runoff, agricultural activities might generate soil, surface water and groundwater contamination problems and leaching of pesticides. Modeling of the transport and fate of pesticides, such as simazine, may help understand the long-term potential risk to the subsurface environment. This paper illustrates a comparative study via the use of three different pesticide transport simulation models and the applicability of those models in determining the groundwater vulnerability to pesticides contamination in a citrus orchard located at the Lower Rio Grande Valley (LRGV). The three models used in the study are the pesticide root zone model-3 (PRZM-3), the pesticide analytical model (PESTAN) and integrated pesticide transport modeling (IPTM). The concentration values obtained from all three models are in agreement, and they show a decreasing trend from the surface through the vadose zone. The problem is how to use this information and, specifically, how to combine the testimony of a number of experts into a single useful judgment. With the aid of the fuzzy multiattribute decision making method, PRZM-3 is deemed as the most promising one for such precision farming applications. 相似文献
45.
Information on distribution and relative abundance of species is integral to sustainable management, especially if they are to be harvested for subsistence or commerce. In northern Australia, natural landscapes are vast, centers of population few, access is difficult, and Aboriginal resource centers and communities have limited funds and infrastructure. Consequently defining distribution and relative abundance by comprehensive ground survey is difficult and expensive. This highlights the need for simple, cheap, automated methodologies to predict the distribution of species in use, or having potential for use, in commercial enterprise. The technique applied here uses a Geographic Information System (GIS) to make predictions of probability of occurrence using an inductive modeling technique based on Bayes' theorem. The study area is in the Maningrida region, central Arnhem Land, in the Northern Territory, Australia. The species examined, Cycas arnhemica and Brachychiton diversifolius, are currently being 'wild harvested' in commercial trials, involving sale of decorative plants and use as carving wood, respectively. This study involved limited and relatively simple ground surveys requiring approximately 7 days of effort for each species. The overall model performance was evaluated using Cohen's kappa statistics. The predictive ability of the model for C. arnhemica was classified as moderate and for B. diversifolius as fair. The difference in model performance can be attributed to the pattern of distribution of these species. C. arnhemica tends to occur in a clumped distribution due to relatively short distance dispersal of its large seeds and vegetative growth from long-lived rhizomes, while B. diversifolius seeds are smaller and more widely dispersed across the landscape. The output from analysis predicts trends in species distribution that are consistent with independent on-site sampling for each species and therefore should prove useful in gauging the extent of resource availability. However, some caution needs to be applied as the models tend to over predict presence which is a function of distribution patterns and of other variables operating in the landscape such as fire histories which were not included in the model due to limited availability of data. 相似文献
46.
Guoyi Zhou Ge Sun Xu Wang Chuanyan Zhou Steven G. McNulty James M. Vose Devendra M. Amatya 《Journal of the American Water Resources Association》2008,44(1):208-221
Abstract: It is critical that evapotranspiration (ET) be quantified accurately so that scientists can evaluate the effects of land management and global change on water availability, streamflow, nutrient and sediment loading, and ecosystem productivity in watersheds. The objective of this study was to derive a new semi‐empirical ET modeled using a dimension analysis method that could be used to estimate forest ET effectively at multiple temporal scales. The model developed describes ET as a function of water availability for evaporation and transpiration, potential ET demand, air humidity, and land surface characteristics. The model was tested with long‐term hydrometeorological data from five research sites with distinct forest hydrology in the United States and China. Averaged simulation error for daily ET was within 0.5 mm/day. The annual ET at each of the five study sites were within 7% of measured values. Results suggest that the model can accurately capture the temporal dynamics of ET in forest ecosystems at daily, monthly, and annual scales. The model is climate‐driven and is sensitive to topography and vegetation characteristics and thus has potential to be used to examine the compounding hydrologic responses to land cover and climate changes at multiple temporal scales. 相似文献
47.
Zhi‐Jun Liu Donald E. Weller Thomas E. Jordan David L. Correll Kathleen B. Boomer 《Journal of the American Water Resources Association》2008,44(3):700-723
Abstract: We present a simple modular landscape simulation model that is based on a watershed modeling framework in which different sets of processes occurring in a watershed can be simulated separately with different models. The model consists of three loosely coupled submodels: a rainfall‐runoff model (TOPMODEL) for runoff generation in a subwatershed, a nutrient model for estimation of nutrients from nonpoint sources in a subwatershed, and a stream network model for integration of point and nonpoint sources in the routing process. The model performance was evaluated using monitoring data in the watershed of the Patuxent River, a tributary to the Chesapeake Bay in Maryland, from July 1997 through August 1999. Despite its simplicity, the landscape model predictions of streamflow, and sediment and nutrient loads were as good as or better than those of the Hydrological Simulation Program‐Fortran model, one of the most widely used comprehensive watershed models. The landscape model was applied to predict discharges of water, sediment, silicate, organic carbon, nitrate, ammonium, organic nitrogen, total nitrogen, organic phosphorus, phosphate, and total phosphorus from the Patuxent watershed to its estuary. The predicted annual water discharge to the estuary was very close to the measured annual total in terms of percent errors for both years of the study period (≤2%). The model predictions for loads of nutrients were also good (20‐30%) or very good (<20%) with exceptions of sediment (40%), phosphate (36%), and organic carbon (53%) for Year 1. 相似文献
48.
This research presents a method to determine the maximum potential for the capturing of solar radiation on the rooftop of buildings in an urban environment. This involves the modeling of solar energy potential and comparison to historical building energy demand profiles through the use of 3-D solar simulation software tools and geographic information systems (GIS). The objective is to accurately identify the amount of surface area that is suitable for solar photovoltaic (PV) installations and to estimate the hourly PV electricity generation potential of existing building rooftops in an urban environment. This study demonstrates a viable approach for modeling urban solar energy and offers valuable information for electricity distributors, policy makers, and urban energy planners to facilitate the substantial design of a green built environment. The developed methodology is comprised of three main sections: (1) determination of suitable rooftop area, (2) determination of the amount of incident solar radiation available per rooftop, and (3) estimation of hourly solar PV electricity generation potential. A case study was performed using this method for Ryerson University, located in Toronto, Canada. It was found that solar PV could supply up to 19% of the study area’s electricity demands during peak consumption hours. The potential benefits of solar PV was also estimated based upon hourly greenhouse gas emission intensity factors as well as Time-of-Use (TOU) savings through the Ontario Feed-in-Tariff (FIT) program, which allows for better representation of the positive impacts of solar technologies. 相似文献
49.
50.
Benchmarking Optical/Thermal Satellite Imagery for Estimating Evapotranspiration and Soil Moisture in Decision Support Tools 下载免费PDF全文
Jan M.H. Hendrickx Richard G. Allen Al Brower Aaron R. Byrd Sung‐ho Hong Fred L. Ogden Nawa Raj Pradhan Clarence W. Robison David Toll Ricardo Trezza Todd G. Umstot John L. Wilson 《Journal of the American Water Resources Association》2016,52(1):89-119
Generally, one expects evapotranspiration (ET) maps derived from optical/thermal Landsat and MODIS satellite imagery to improve decision support tools and lead to superior decisions regarding water resources management. However, there is lack of supportive evidence to accept or reject this expectation. We “benchmark” three existing hydrologic decision support tools with the following benchmarks: annual ET for the ET Toolbox developed by the United States Bureau of Reclamation, predicted rainfall‐runoff hydrographs for the Gridded Surface/Subsurface Hydrologic Analysis model developed by the U.S. Army Corps of Engineers, and the average annual groundwater recharge for the Distributed Parameter Watershed Model used by Daniel B. Stephens & Associates. The conclusion of this benchmark study is that the use of NASA/USGS optical/thermal satellite imagery can considerably improve hydrologic decision support tools compared to their traditional implementations. The benefits of improved decision making, resulting from more accurate results of hydrologic support systems using optical/thermal satellite imagery, should substantially exceed the costs for acquiring such imagery and implementing the remote sensing algorithms. In fact, the value of reduced error in estimating average annual groundwater recharge in the San Gabriel Mountains, California alone, in terms of value of water, may be as large as $1 billion, more than sufficient to pay for one new Landsat satellite. 相似文献