首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   725篇
  免费   90篇
  国内免费   244篇
安全科学   30篇
废物处理   80篇
环保管理   72篇
综合类   487篇
基础理论   115篇
污染及防治   177篇
评价与监测   68篇
社会与环境   20篇
灾害及防治   10篇
  2024年   1篇
  2023年   19篇
  2022年   27篇
  2021年   32篇
  2020年   24篇
  2019年   30篇
  2018年   36篇
  2017年   33篇
  2016年   31篇
  2015年   37篇
  2014年   37篇
  2013年   47篇
  2012年   27篇
  2011年   65篇
  2010年   53篇
  2009年   51篇
  2008年   57篇
  2007年   45篇
  2006年   38篇
  2005年   32篇
  2004年   31篇
  2003年   28篇
  2002年   34篇
  2001年   54篇
  2000年   23篇
  1999年   26篇
  1998年   22篇
  1997年   28篇
  1996年   20篇
  1995年   14篇
  1994年   8篇
  1993年   6篇
  1992年   10篇
  1991年   10篇
  1990年   6篇
  1989年   1篇
  1988年   1篇
  1987年   4篇
  1985年   3篇
  1984年   2篇
  1983年   4篇
  1975年   1篇
  1973年   1篇
排序方式: 共有1059条查询结果,搜索用时 187 毫秒
941.
The amount of dry deposition of SO2(g) and HNO3(g) in an urban area in Japan has been estimated by the inferential method. The mean annual dry deposition of SO2(g) (2.91 kgS/ha/year) was close to or less than that in the Clean Air Status and Trends Network (CASTNet) of the U.S. (3.59 kgS/ha/year). The mean annual dry deposition of HNO3(g) (10.8 kgN/ha/year) was approximately six times larger than that in CASTNet (1.85 kgN/ha/year). The proportions of dry/(dry+wet) deposition for sulfur and nitrogen were 0.301 and 0.785, respectively.  相似文献   
942.
The regional acid deposition model system (RegADMS) was applied to simulate the air sulfur deposition onto different landuse types over China, in which the dry deposition velocities of SO2 and sulfate aerosol (SO 4 2– ) were estimated by use of a big leaf resistance analogy model and the wet scavenging coefficients were parameterized in terms of precipitation rate. Investigations show that the annual total sulfur deposition over mainland China is 7.24 mt (1 mt = 106 ton) , in which dry deposition and wet deposition accounts for 56 and 44%, respectively. The sulfur deposition onto agriculture land, grass land, and forest land is 1.09, 3.6 and 1.41 mt, respectively, which sums 6.1 mt and accounts for 84% of the total sulfur deposition. The modeled sulfur deposition was in agreement with the measurement conducted at farmland in Yingtan, a typical read soil region in Jiangxi province of China, during the period of November 1998–October 1999. The total sulfur deposition at the Yingtan site is about 10.3 gm–2 year–1 of which 83% is dry deposition. The modeling sulfur deposition at the same site is 8.4 gm–2 year–1. Furthermore, the comparison between RegADMS and RAINS-ASIA on modeling regional sulfur deposition shows the consistence of the two models. The correlation coefficient between the simulated sulfur deposition at the medium-large cities reaches 0.72.  相似文献   
943.
区域源解析模式的建立   总被引:6,自引:1,他引:6  
运用数值分类学手段建立了一种迭代的(iterative)、分裂的(divisive)、不加权的(non-weighting)、非交迭(nonoverlapping)的运算程式(IDNN模式),从实测原始数据中提取可近似作为纯源的样品和相应的性状,通过分析这些近似纯源样品及与之关系密切的其它特征样品的采样参数和成分特征可鉴别或识别源的类型,运用化学质量平衡法(CMB)求解受体样品的定量来源.在对模拟数据的验证处理中,IDNN模式显示了初步成功.  相似文献   
944.
ABSTRACT: The three basins of Reelfoot Lake, which is located in northwestern Tennessee, were investigated using the Cs-137 tracer technique to determine rates of sediment deposition and to estimate the time before the basins will fill with sediment. Blue Basin, the largest of the three basins with 2922 ha, had an average annual sedimentation rate of 0.9 cm/yr from 1984 to 1984. The basin will become too shallow for most boating and recreational activities in about 200 years. Buck Basin, the central basin with 774 ha, had an average annual sedimentation rate of 1.1 cm/yr and will become too shallow for most recreational uses in about 100 years. Upper Blue Basin, the most upstream and smallest basin with 439 ha, had an average annual sedimentation rate of 1.7 cm/yr and will become too shallow for most recreational uses in about 60 years. Two important sources of sediment to Reelfoot Lake are erosion from a large number of soybean fields and channelization of many of the streams that flow into the lake. Changes in land management that would reduce erosion could increase the time the lake would remain usable for recreational activities.  相似文献   
945.
The present and potential adverse effects of the atmospheric input of acidic and acidifying substances on the environment have been of significant public and scientific concern for the past several decades. This article describes the background, design, implementation, and major accomplishments of a 6-yr integrated multidisciplinary environmental research program designed to address the issue of the regional scale consequences of acidic deposition on the environment and human health in Alberta. The research program was called the Acid Deposition Research Program (ADRP) and was a cooperative undertaking between industry, the Energy Resources Conservation Board, and the government of Alberta, Canada. The research effort was designed and guided by two external science advisory boards, biophysical and human health, to maintain objectivity and continuity from beginning to end. Public input was sought, encouraged, and ensured by a public advisory board. The major conclusions of the ADRP are presented as well as observations on the needs of future integrated multidisciplinary research programs.  相似文献   
946.
ABSTRACT: We surveyed over 2000 lakes in the State of Massachusetts (1983–1984) to examine the spatial variations in their acid-base chemistry. Our survey differed from previous surveys by including small lakes and nonpristine urban lakes. For samples collected in October 1983 and 1984, the median acid neutralizing capacity (ANC) was 184 μeq L?1 and 5.9 percent were acidic (ANC≤O). Small lakes (<4 ha) were more likely to be acidic than large lakes. Generally, sulfate was the dominant acidifying agent, although organic anions were dominant in some of the lakes in the Cape Cod Region. The ionic composition of the lakes showed strong regional patterns which appear to be related to geology and human population density. An analysis of variance of ANC shows the six regional categories in the state explain 51 percent of the variance, while a combined general linear model of lake drainage type, color, elevation, size, silica, and hydrogen ion deposition could explain only 4.9 percent of the variation in ANC. Calcium rich, high ionic strength lakes were present in the marble bedrock in the west, and relatively dilute lakes dominated by sodium and chloride were found near the coast. Chloride concentrations were also related to population density, suggesting road salt as a likely contributing source.  相似文献   
947.
Methods are discussed for describing patterns of current wet and dry deposition under various scenarios. It is proposed that total deposition data across an area of interest are the most relevant in the context of critical loads of acidic deposition, and that the total (i.e., wet plus dry) deposition will vary greatly with the location, the season, and the characteristics of individual subregions. Wet and dry deposition are proposed to differ in such fundamental ways that they must be considered separately. Both wet and dry deposition rates are controlled by the presence of the chemical species in question in the air (at altitudes of typically several kilometers in the case of wet deposition, and in air near the surface for dry). The great differences in the processes involved lead to the conclusion that it is better to measure wet and dry deposition separately and combine these quantifications to produce “total deposition” estimates than to attempt to derive total deposition directly. A number of options for making estimates of total deposition to be used in critical loads assessment scenarios are discussed for wet deposition (buckets and source receptor models) and for dry deposition (throughfall, micrometeorology, surrogate surfaces and collection vessels, inference from concentrations, dry-wet ratios, and source-receptor models). The research described in this article has been funded by the US Environmental Protection Agency. This document has been prepared at the EPA Environmental Research Laboratory in Corvallis, Oregon, through contract #68-C8-0006 with ManTech Environmental Technology, Inc., and Interagency Agreement #1824-B014-A7 with the U.S. Department of Energy and at Oak Ridge National Laboratory managed by Martin Marietta Energy Systems, Inc., under Contract DE-AC05-84OR21400 with the US Department of Energy. Environmental Sciences Division Publication No. 3905. It has been subjected to the Agency’s peer and administrative review and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.  相似文献   
948.
Temporal trends of non-sea salt (nss-) sulfate and nitrate were analyzed from nationwide precipitation chemistry measurements provided by the Ministry of the Environment (MOE) for the 1988–2002 fiscal years (April–March). The concentrations and deposition of nss-sulfate were found to be decreasing, and those of nitrate were stable or slightly increasing at most sites. These deposition trends were discussed from the viewpoint of emissions of SO2 and NOX during the period of interest. Because monitoring techniques have changed in the number of active sites, samplers, and analytical methods during the operation period, the median of all annual depositions measured in Japan in a specific year was selected as the annual representative. The contribution of specific emission sources was also calculated for 1990 on the basis of the nss-sulfate and nitrate deposition in Japan obtained with a model simulation in which the model did not include volcanic emissions from Mt. Oyama, Miyakejima Island, which began to erupt suddenly and violently in 2000. For nss-sulfate, the calculated deposition agrees well with the intensity and trends of the median up to 1999. After 2000, a higher deposition than calculated in the preceding years was evident, which is attributable to the volcanic SO2 from Mt. Oyama. For nitrate, both the calculated and observed depositions were slightly increasing; however, the calculation was found to exceed the observation.  相似文献   
949.
为精准分析环境介质在零价铁(ZVI)界面沉积过程和沉积层特性,采用喷涂方法制备ZVI负载芯片,应用耗散式石英晶体微天平(QCMD)研究了腐殖酸(HA)与钙离子(Ca(Ⅱ))在ZVI界面沉积吸附过程的差异,并探讨了Ca(Ⅱ)浓度与HA/Ca(Ⅱ)投加顺序对沉积过程的影响机理.结果表明,在反应体系中先通入HA相较先通入Ca(Ⅱ),ZVI表面形成的沉积层质量更高、沉积层结构更稳定;HA沉积后可促进Ca(Ⅱ)沉积,然而Ca(Ⅱ)先沉积后HA沉积量较少,很大程度上与吸附层外层结构组成差异相关.此外,发现随着Ca(Ⅱ)浓度从10mg/L升高至200mg/L,Ca(Ⅱ)沉积速率加快,界面沉积量增多.QCMD耗散变化研究发现,当Ca(Ⅱ)浓度从10mg/L提高至100mg/L,沉积层耗散变化值(ΔD)逐渐下降,沉积层转变为刚性结构;Ca(Ⅱ)浓度继续加大到200mg/L,ΔD升高趋势,沉积层构象呈现疏松态.应用QCMD可实时监测ZVI钝化层形成的动态变化过程,提供了ZVI界面吸附层变化特征等关键信息.  相似文献   
950.
通过研究过去国内常用的两种有机氯农药滴滴涕(DDTs)和六六六(HCHs)在沉积物岩芯中的相关文献,总结和分析其在中国各地的历史沉积情况.结果表明:(1)∑4DDTs(p,p'-DDT, o,p'-DDT, p,p'-DDD, p,p'-DDE)浓度在安徽巢湖北岸六岔河流域最高,在1965年达到最大值(457ng/g dw),∑6DDTs(p,p'-DDT, o,p'-DDT, p,p'-DDD, o,p'-DDD, p,p'-DDE, o,p'-DDE)浓度在广东省海陵湾最高,在2008~2010年达到最大值(3480ng/g dw),∑4HCHs(α-HCH,β-HCH,γ-HCH,δ-HCH)浓度在澳门河口最高,在1993年达到最大值(82.3ng/g dw);(2)∑4DDTs和∑4HCHs沉降通量在珠江三角洲最高,二十世纪七八十年代达到最大值,分别为115ng/(cm2×a)和32.5ng/(cm2×a),总体来说,DDTs和HCHs在中国沉积物岩芯中的浓度和沉降通量在南部地区要高于北部地区,平原地区和低纬度地区高于高寒地区(青藏高原)和高纬度地区(东北地区),水产养殖区或种植区高于非养殖区和非种植区;(3)从全国范围看,∑4DDTs和∑6DDTs浓度和沉降通量主要在20世纪70年代和21世纪中期出现峰值,少数研究区域峰值年份早在20世纪60年代,∑4HCHs浓度和沉降通量峰值主要出现在20世纪70年代和21世纪初,少数研究区域峰值年份早在20世纪60年代;(4)从全国范围看,(DDD+DDE)/DDT比值没有可循的变化规律,DDTs可能来源于历史沉积、成岩作用以及外源土壤、三氯杀螨醇的使用等新输入,而很多地区在20世纪后期到21世纪中期均出现α-HCH/γ-HCH降低到小于3,表明这段时期HCHs主要来源于林丹的使用.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号