首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   846篇
  免费   79篇
  国内免费   30篇
安全科学   13篇
废物处理   9篇
环保管理   738篇
综合类   103篇
基础理论   49篇
污染及防治   5篇
评价与监测   22篇
社会与环境   10篇
灾害及防治   6篇
  2023年   15篇
  2021年   8篇
  2020年   7篇
  2019年   11篇
  2018年   19篇
  2017年   33篇
  2016年   20篇
  2015年   18篇
  2014年   17篇
  2013年   30篇
  2012年   27篇
  2011年   29篇
  2010年   32篇
  2009年   24篇
  2008年   21篇
  2007年   37篇
  2006年   26篇
  2005年   32篇
  2004年   45篇
  2003年   44篇
  2002年   34篇
  2001年   31篇
  2000年   32篇
  1999年   37篇
  1998年   36篇
  1997年   25篇
  1996年   43篇
  1995年   20篇
  1994年   19篇
  1993年   15篇
  1992年   14篇
  1991年   18篇
  1990年   9篇
  1989年   6篇
  1988年   7篇
  1987年   14篇
  1985年   8篇
  1983年   4篇
  1982年   12篇
  1981年   6篇
  1980年   15篇
  1979年   6篇
  1978年   7篇
  1977年   2篇
  1976年   4篇
  1975年   8篇
  1974年   2篇
  1973年   5篇
  1972年   6篇
  1971年   8篇
排序方式: 共有955条查询结果,搜索用时 0 毫秒
81.
ABSTRACT: Historical trends in annual discharge characteristics were evaluated for 11 gauging stations located throughout Iowa. Discharge records from nine eight‐digit hydrologic unit code (HUC‐8) watersheds were examined for the period 1940 to 2000, whereas data for two larger river systems (Cedar and Des Moines Rivers) were examined for a longer period of record (1903 to 2000). In nearly all watersheds evaluated, annual base flow, annual minimum flow, and the annual base flow percentage significantly increased over time. Some rivers also exhibited increasing trends in total annual discharge, whereas only the Maquoketa River had significantly decreased annual maximum flows. Regression of stream discharge versus precipitation indicated that more precipitation is being routed into streams as base flow than as storm flow in the second half of the 20th Century. Reasons for the observed stream flow trends are hypothesized to include improved conservation practices, greater artificial drainage, increasing row crop production, and channel incision. Each of these reasons is consistent with the observed trends, and all are likely responsible to some degree in most watersheds.  相似文献   
82.
Road-related erosion was estimated by measuring 100 randomly located plots on a 180 km road network in the middle reach of R'dwood Creek in northwestern California. The estimated erosion ratn of 177 m3 km-1 was contrasted with two earlier studies in nearby parts of the same watershed. A sizable proportion of the great reduction in erosion from that reported in the earlier studies is attributed to changes in forest practice rules. Those changes have resulted in better placement and sizing of culverts and, especially, to less reliance on culverts to handle runoff from logging roads.  相似文献   
83.
We develop and compare three regression models for estimating flood quantiles at ungaged stream reaches in New Hampshire and Vermont. These models emerge from systematic analysis and validation of relations between flood magnitude and six candidate predictors reflecting basin size, topography, and climate and channel size at 36 gaging stations with record lengths exceeding 20 years. Of the candidate predictors, bank full width is most highly correlated with flood magnitude and the best prediction equation is based on width. Thus channel geometry is closely related to the current hydrologic regime in spite of geologically recent glaciation and apparently non-alluvial bank materials. We also develop models that use information obtainable from maps or GIS. The best of these uses drainage area and drainage-basin elevation as predictors, but it is substantially less precise than the width-based relation. A third relation using only drainage area as a predictor is even less precise but may be useful for some purposes. No other single predictors or combinations yielded useful predictions, although some had been included in previously-established models for the region. Model comparison included examination of residuals generated by regression using one-at-a-time suppression of data points and comparison with precision obtainable with gaging records of varying lengths.  相似文献   
84.
ABSTRACT: As part of the National Assessment of Climate Change, the implications of future climate predictions derived from four global climate models (GCMs) were used to evaluate possible future changes to Pacific Northwest climate, the surface water response of the Columbia River basin, and the ability of the Columbia River reservoir system to meet regional water resources objectives. Two representative GCM simulations from the Hadley Centre (HC) and Max Planck Institute (MPI) were selected from a group of GCM simulations made available via the National Assessment for climate change. From these simulations, quasi-stationary, decadal mean temperature and precipitation changes were used to perturb historical records of precipitation and temperature data to create inferred conditions for 2025, 2045, and 2095. These perturbed records, which represent future climate in the experiments, were used to drive a macro-scale hydrology model of the Columbia River at 1/8 degree resolution. The altered streamflows simulated for each scenario were, in turn, used to drive a reservoir model, from which the ability of the system to meet water resources objectives was determined relative to a simulated hydrologic base case (current climate). Although the two GCM simulations showed somewhat different seasonal patterns for temperature change, in general the simulations show reasonably consistent basin average increases in temperature of about 1.8–2.1°C for 2025, and about 2.3–2.9°C for 2045. The HC simulations predict an annual average temperature increase of about 4.5°C for 2095. Changes in basin averaged winter precipitation range from -1 percent to + 20 percent for the HC and MPI scenarios, and summer precipitation is also variously affected. These changes in climate result in significant increases in winter runoff volumes due to increased winter precipitation and warmer winter temperatures, with resulting reductions in snowpack. Average March 1 basin average snow water equivalents are 75 to 85 percent of the base case for 2025, and 55 to 65 percent of the base case by 2045. By 2045 the reduced snowpack and earlier snow melt, coupled with higher evapotranspiration in early summer, would lead to earlier spring peak flows and reduced runoff volumes from April-September ranging from about 75 percent to 90 percent of the base case. Annual runoff volumes range from 85 percent to 110 percent of the base case in the simulations for 2045. These changes in streamflow create increased competition for water during the spring, summer, and early fall between non-firm energy production, irrigation, instream flow, and recreation. Flood control effectiveness is moderately reduced for most of the scenarios examined, and desirable navigation conditions on the Snake are generally enhanced or unchanged. Current levels of winter-dominated firm energy production are only significantly impacted for the MPI 2045 simulations.  相似文献   
85.
ABSTRACT: Historically ephemeral washes in the Las Vegas Valley have become perennial streams in the urbanized area, and the primary source of these perennial flows appears to be the overirrigation of ornamental landscaping and turf. Overirrigation produces direct runoff to the washes via the streets and results in high ground water levels in some areas. Elevated ground water levels result in discharge to the washes because of changes in the natural balance of the hydrologic system and construction site and foundation dewatering. In recognition of the resource potential of these flows within the Las Vegas Valley, of the potential for dry weather flows to convey pollutants from the Valley to Lake Mead, and of the need to characterize dry weather flows under the stormwater discharge permit program, the quantity and quality of dry weather flow in Flamingo Wash was investigated during the period September 1990 through May 1993. This paper focuses on the resource potential of the flow (quantity and quality) as it relates to the interception and use of this water within the Valley. Economic and legal issues associated with the interception and use of this resource are not considered here.  相似文献   
86.
ABSTRACT: Forest land managers are concerned about the effects of logging on soil erosion, streamflow, and water quality and are promoting the use of Best Management Practices (BMPs) to control impacts. To compare the effects of BMP implementation on streamwater quality, two of three small watersheds in Kentucky were harvested in 1983 and 1984, one with BMPs, the other without BMPs. There was no effect of clearcutting on stream temperatures. Streamflow increased by 17.8 cm (123 percent) on the BMP watershed during the first 17 months after cutting and by 20.6 cm (138 percent) on the Non-BMP watershed. Water yields remained significantly elevated compared to the uncut watershed 8 years after harvesting. Suspended sediment flux was 14 and 30 times higher on the BMP and Non-BMP Watersheds, respectively, than on the uncut watershed during treatment, and 4 and 6.5 times higher in the 17 months after treatment was complete. Clearcutting resulted in increased concentrations of nitrate, and other nutrients compared to the uncut watershed, and concentrations were highest on the non-BMP watershed. Recovery of biotic control over nutrient losses occurred within three years of clearcutting. The streamside buffer strip was effective in reducing the impact of clearcutting on water yield and sediment flux.  相似文献   
87.
ABSTRACT: Detailed studies of the surface hydrology of reclaimed surface-mined watersheds for both rainfall and snowmelt events are non-existent for central Alberta yet this information is crucial for design of runoff conveyance and storage structures. A study was initiated in 1992 with principal objectives of quantifying surface runoff for both summer rainfall and spring snowmelt events and identifying the dominant flow processes occurring in two reclaimed watersheds. Snowmelt accounted for 86 and 100% of annual watershed runoff in 1993 and 1994, respectively. The highest instantaneous peak flow was recorded during a summer rainfall event with a return period of greater than 50 years. Infiltration-excess overland flow was identified as the dominant flow process occurring within the Sandy Subsoil Watershed, whereas saturation overland flow was the principal runoff process occurring within the West Watershed.  相似文献   
88.
ABSTRACT: The Wyoming shield and dual-gage measuring systems were developed to measure all precipitation, but more specifically snowfall under windy conditions. Results of a study at five sites on the Reynolds Creek Experimental Watershed in southwest Idaho indicate that gages with Wyoming shields and the dual-gage system measured the same amount when air temperatures were higher than ?2.2°C. Precipitation amounts computed from the dual. gage system were slightly more than from gages with Wyoming shields for snowfall, especially under windy conditions. Results also show how well the Alter shielded and unshielded gages used in the dual-gage system represent the computed catch if data were only available from one or the other of the gages.  相似文献   
89.
Lakes are dominant landforms in the National Petroleum Reserve Alaska (NPRA) as well as important social and ecological resources. Of recent importance is the management of these freshwater ecosystems because lakes deeper than maximum ice thickness provide an important and often sole source of liquid water for aquatic biota, villages, and industry during winter. To better understand seasonal and annual hydrodynamics in the context of lake morphometry, we analyzed lakes in two adjacent areas where winter water use is expected to increase in the near future because of industrial expansion. Landsat Thematic Mapper and Enhanced Thematic Mapper Plus imagery acquired between 1985 and 2007 were analyzed and compared with climate data to understand interannual variability. Measured changes in lake area extent varied by 0.6% and were significantly correlated to total precipitation in the preceding 12 months (p < 0.05). Using this relation, the modeled lake area extent from 1985 to 2007 showed no long-term trends. In addition, high-resolution aerial photography, bathymetric surveys, water-level monitoring, and lake-ice thickness measurements and growth models were used to better understand seasonal hydrodynamics, surface area-to-volume relations, winter water availability, and more permanent changes related to geomorphic change. Together, these results describe how lakes vary seasonally and annually in two critical areas of the NPRA and provide simple models to help better predict variation in lake-water supply. Our findings suggest that both overestimation and underestimation of actual available winter water volume may occur regularly, and this understanding may help better inform management strategies as future resource use expands in the NPRA.  相似文献   
90.
ABSTRACT: Ground water and surface water interaction in the prairie pothole region of the United States and Canada is seasonally dominated by the presence of thick, frozen soil layers that affect infiltration. During a spring thaw, the subsoil may remain frozen, preventing infiltration. The impact of the frozen soil layer on the timing of infiltration of depressional‐focused recharge to the ground water is not clearly understood. The objective of this paper is to relate changes in the water table during spring to changes in frost depth and soil water content. A depression and adjacent upland study site were instrumented with CRREL‐type frost tubes, neutron probe access tubes, and ground water monitoring wells. Increases in water table levels in a depression occurred before the frost layer decomposed and infiltrating water quickly formed a recharge mound. Water table responses at the upland site took place as two events. The first event was a gradual rise, probably caused by the lateral dissemination of the recharge mound. The second rise was a rapid rise coinciding with the decomposition of the soil frost layer. Because of the accumulation of surface water in depressions, agricultural practices that remove water from a field can affect water resources management by limiting the addition of water recharge to unconfmed ground water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号