首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3268篇
  免费   138篇
  国内免费   414篇
安全科学   33篇
废物处理   5篇
环保管理   707篇
综合类   1587篇
基础理论   536篇
环境理论   2篇
污染及防治   50篇
评价与监测   106篇
社会与环境   731篇
灾害及防治   63篇
  2024年   26篇
  2023年   39篇
  2022年   90篇
  2021年   88篇
  2020年   106篇
  2019年   101篇
  2018年   110篇
  2017年   168篇
  2016年   156篇
  2015年   135篇
  2014年   102篇
  2013年   195篇
  2012年   192篇
  2011年   227篇
  2010年   192篇
  2009年   131篇
  2008年   163篇
  2007年   236篇
  2006年   214篇
  2005年   157篇
  2004年   148篇
  2003年   144篇
  2002年   100篇
  2001年   83篇
  2000年   73篇
  1999年   88篇
  1998年   51篇
  1997年   33篇
  1996年   54篇
  1995年   23篇
  1994年   26篇
  1993年   30篇
  1992年   20篇
  1991年   23篇
  1990年   18篇
  1989年   7篇
  1988年   9篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1983年   7篇
  1982年   3篇
  1981年   4篇
  1980年   9篇
  1979年   3篇
  1978年   3篇
  1977年   6篇
  1975年   9篇
  1972年   1篇
  1971年   2篇
排序方式: 共有3820条查询结果,搜索用时 898 毫秒
431.
Soil samples were collected from three plots under di erent land utilization patterns including degradation, farming, and restoration. The abundances of methanotrophs were quantified using real-time polymerase chain reaction (PCR) based on the pmoA and 16S rRNA genes, and the community fingerprint was analyzed using denaturing gradient gel electrophoresis (DGGE) aiming at pmoA gene. Significantly lower 16S rRNA and pmoA genes copies were found in the degradation treatment than in farming and restoration. Higher abundances of Type I than those of Type II methanotrophs were detected in all treatments. The treatment of farming was clearly separated from degradation and restoration according to the DGGE profile by cluster analysis. The lowest diversity indices were observed in the F (farming plot), suggesting that the community structure was strongly a ected by farming activities. There were significantly positive correlations between the copy numbers of pmoA also Type II-related 16S rRNA genes and soil available K content. Strong negative and positive correlations were found between Type I and soil pH, and available P content, respectively. We concluded that the vegetation cover or not, soil characteristics including pH and nutrients of P and K as a result of anthropogenic disturbance may be key factors a ecting methanotrophic communities in upland soil.  相似文献   
432.
1950s中期以来东北地区盐碱地时空变化及成因分析   总被引:4,自引:0,他引:4  
论文以1950s中期1:100000地形图和2000年Landsat/TM影像为数据源,基于地学知识重塑1950s中期盐碱地分布状况,通过人机交互解译方式获取2000年盐碱地分布状况,然后采用GIS空间分析方法对近50年盐碱地时空变化特征进行分析。结果表明:①东北盐碱地主要分布在松嫩平原(占90%以上)和呼伦贝尔草原,盐碱地由58.51×104hm2增至219.31×104hm2,吉林省盐碱地扩展最显著,盐碱地面积最大;②盐碱化程度从以轻度盐碱化为主发展为以中重度盐碱化为主;③气候变化、水利灌溉设施和道路网建设、过牧和滥垦、油田开采等多种因素导致东北盐碱地扩大,但在局部地区由于生态恢复和改良利用措施、过量抽取地下水导致水位大幅度下降,使得盐碱地也有缩减。  相似文献   
433.
Effects of land use change and water reuse options on urban water cycle   总被引:1,自引:1,他引:0  
The aim of this article was to study the effects of land use change and water reuse options on an urban water cycle. A water cycle analysis was performed on the Goonja drainage basin, located in metropolitan Seoul, using the Aquacycle model. The chronological e ects of urbanization were first assessed for the land uses of the Goonja drainage basin from 1975 to 2005, where the ratio of impervious areas ranged from 43% to 84%. Progressive urbanization was identified as leading to a decrease in evapotranspiration (29%), an increase in surface runo (41%) and a decrease in groundwater recharge (74%), indicating a serious distortion of the water cycle. From a subsequent analysis of the water reuse options, such as rainwater use and wastewater reuse, it is concluded that wastewater reuse seemed to have an advantage over rainwater use for providing a consistent water supply throughout the year for a country like Korea, where the rainy season is concentrated during the summer monsoon.  相似文献   
434.
基于地质环境评价的九江市区不同功能用地优化布局   总被引:1,自引:1,他引:0  
从地质环境角度,对九江市区不同功能用地类型进行了系统划分,并针对划分的主要功能用地类型(居住及公共设施用地、工业及仓储用地、生态绿化用地)分别进行了地质环境适宜性评价,根据评价结果,结合九江市区的用地现状,提出了不同功能用地优化布局建议,为九江市区后期用地规划与调整提供了依据.  相似文献   
435.
Soil erosion from agricultural land use runoff is a major threat to the sustainability of soil composition and water resource integrity. Sugarcane is an important cash and food security crop in South Africa, subjected to an intensive soil erosion, and consequently, severe land degradation. This study aimed to investigate soil erosion and associated soil and cover factors under rainfed sugarcane, in a small catchment, KwaZulu‐Natal, South Africa. Three replicated runoff plots were installed at different slope positions (down, mid and upslope) within cultivated sugarcane fields to monitor soil erosion during the 2016–2017 rainy season. On average, annual runoff (RF) was significantly greater from 10 m2 plots with 1163.77 ± 2.63 l/m/year compared to 1 m2 plots. However, sediment concentration (SC) was significantly lower in 10 m2 (0.34 ± 0.04 g/l) compared to 1 m2 (6.94 ± 0.24 g/l) plots. The annual soil losses (SL) calculated from 12 rainfall events was 58.36 ± 0.77 and 8.84 ± 0.20 t/ha from 1 m2 and 10 m2 plots, respectively. The 1 m2 plot, SL (2.4 ± 1.41 ton/ha/year) in the upslope experienced 33% more loss than the midslope and 50% more loss than the downslope position. SL was relatively lower from the 10 m2 plots than the 1 m2 plots, which is explained by high sediment deposition at the greater plot scale. SL was negatively correlated with the soil organic carbon stocks (r = ?0.82) and soil surface cover (r = ?0.55). RF decreased with the increase of slope gradient (r = ?0.88) and soil infiltration rate (r = ?0.87). There were considerable soil losses from cultivated sugarcane fields with low organic matter. These findings suggest that to mitigate soil erosion, soil organic carbon stocks and vegetation cover needs to be increased through appropriate land management practices, particularly in cultivated areas with steep gradients.  相似文献   
436.
The Ganges Delta in Bangladesh is an example of water‐related catastrophes in a major rural river basin where limitations in quantity, quality, and timing of available water are producing disastrous conditions. Water availability limitations are modifying the hydrologic characteristics especially when water allocation is controlled from the upstream Farakka Barrage. This study presents the changes and consequences in the hydrologic regime due to climate‐ and human‐induced stresses. Flow duration curves (FDCs), rainfall elasticity, and temperature sensitivity were used to assess the pre‐ and post‐barrage water flow patterns. Hydrologic and climate indices were computed to provide insight on hydro‐climatic variability and trend. Significant increases in temperature, evapotranspiration, hot days, heating, and cooling degree days indicate the region is heading toward a warmer climate. Moreover, increase in high‐intensity rainfall of short duration is making the region prone to extreme floods. FDCs depict a large reduction in river flows between pre‐ and post‐barrage periods, resulting in lower water storage capacity. The reduction in freshwater flow increased the extent and intensity of salinity intrusion. This freshwater scarcity is reducing livelihood options considerably and indirectly forcing population migration from the delta region. Understanding the causes and directions of hydrologic changes is essential to formulate improve water resources management in the region.  相似文献   
437.
Anticipating changes in hydrologic variables is essential for making socioeconomic water resource decisions. This study aims to assess the potential impact of land use and climate change on the hydrologic processes of a primarily rain‐fed, agriculturally based watershed in Missouri. A detailed evaluation was performed using the Soil and Water Assessment Tool for the near future (2020–2039) and mid‐century (2040–2059). Land use scenarios were mapped using the Conversion of Land Use and its Effects model. Ensemble results, based on 19 climate models, indicated a temperature increase of about 1.0°C in near future and 2.0°C in mid‐century. Combined climate and land use change scenarios showed distinct annual and seasonal hydrologic variations. Annual precipitation was projected to increase from 6% to 7%, which resulted in 14% more spring days with soil water content equal to or exceeding field capacity in mid‐century. However, summer precipitation was projected to decrease, a critical factor for crop growth. Higher temperatures led to increased potential evapotranspiration during the growing season. Combined with changes in precipitation patterns, this resulted in an increased need for irrigation by 38 mm representing a 10% increase in total irrigation water use. Analysis from multiple land use scenarios indicated converting agriculture to forest land can potentially mitigate the effects of climate change on streamflow, thus ensuring future water availability.  相似文献   
438.
The potential impacts driven by climate variability and urbanization in the Boise River Watershed (BRW), located in southwestern Idaho, are evaluated. The outcomes from Global Circulation Models (GCMs) and land use and land cover (LULC) analysis have been incorporated into a hydrological and environmental modeling framework to characterize how climate variability and urbanization can affect the local hydrology and environment at the BRW. The combined impacts of future climate and LULC change are also evaluated relative to the historical baseline conditions. For modeling exercises, Hydrological Simulation Program‐Fortran (HSPF) is used in parallel computing and statistical techniques, including spatial downscaling and bias correlation, are employed to evaluate climate consequences derived from GCMs as well. The implications of climate variability and land use change driven by urbanization are then observed to evaluate how these overall global challenges can affect water quantity and quality conditions at the BRW. The results show the combined impacts of both climate change and urbanization can lead to more seasonal variability of streamflow (from ?27.5% to 12.5%) and water quality, including sediment (from ?36.5% to 49.3%), nitrogen (from ?24% to 124.2%), and phosphorus (from ?13.3% to 21.2%) during summer and early fall over the next several decades.  相似文献   
439.
利用宜兴市2012年-2014年土地利用数据、水生态健康等相关数据,引用土地利用动态度和土地利用综合程度指数,对土地利用变化和水生态健康现状进行分析,运用相关性分析法测算土地利用类型比例与水生态健康主要指标的相关性.结果表明:耕地、建设用地比例与水生态健康综合指标负相关,湿地、草地、园地、林地用地比例与水生态健康综合指标正相关;建设用地比例与底栖动物负相关;湿地用地比例与营养、底栖动物指标正相关较强.  相似文献   
440.
通过对贵州织金典型煤矿区矸石堆场周边地表水体及耕地进行调查与采样分析,探讨了煤矸石堆场Fe、Mn元素迁移对周边地表水体及耕地累积效应的影响。研究结果表明:受煤矸石堆场酸性排水的影响,煤矸石堆场周边溪沟水Fe、Mn含量分别达0.81~32.14mg/L、1.17~8.42mg/L,超过"集中式生活饮用水地表水源地标准"限值的3~107、12~84倍。堆场周边旱作土中Fe、Mn含量分别达63 530~85 990mg/kg、243.1~910.1mg/kg,水稻土达46 940~75 810mg/kg、144.5~409.1mg/kg,Fe、Mn累积指数旱作土分别达1.61、2.97,水稻土分别达1.24、1.33。随着与堆场距离的增大,水稻土Fe、Mn含量逐步降低,在500m范围内Fe降低了35%,Mn降低了61%,而旱作土变化规律不明显。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号