首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8124篇
  免费   568篇
  国内免费   271篇
安全科学   1617篇
废物处理   138篇
环保管理   3070篇
综合类   2142篇
基础理论   812篇
环境理论   10篇
污染及防治   207篇
评价与监测   334篇
社会与环境   353篇
灾害及防治   280篇
  2023年   85篇
  2022年   112篇
  2021年   179篇
  2020年   243篇
  2019年   190篇
  2018年   165篇
  2017年   220篇
  2016年   307篇
  2015年   256篇
  2014年   316篇
  2013年   455篇
  2012年   450篇
  2011年   572篇
  2010年   387篇
  2009年   496篇
  2008年   359篇
  2007年   475篇
  2006年   473篇
  2005年   364篇
  2004年   402篇
  2003年   299篇
  2002年   282篇
  2001年   272篇
  2000年   271篇
  1999年   205篇
  1998年   131篇
  1997年   135篇
  1996年   109篇
  1995年   105篇
  1994年   49篇
  1993年   62篇
  1992年   57篇
  1991年   47篇
  1990年   33篇
  1989年   27篇
  1988年   34篇
  1987年   33篇
  1986年   27篇
  1985年   23篇
  1984年   27篇
  1983年   17篇
  1982年   22篇
  1981年   18篇
  1980年   24篇
  1979年   33篇
  1978年   21篇
  1975年   14篇
  1973年   14篇
  1972年   16篇
  1971年   14篇
排序方式: 共有8963条查询结果,搜索用时 234 毫秒
451.
A long‐standing “Digital Divide” in data representation exists between the preferred way of data access by the hydrology community and the common way of data archival by earth science data centers. Typically, in hydrology, earth surface features are expressed as discrete spatial objects (e.g., watersheds), and time‐varying data are contained in associated time series. Data in earth science archives, although stored as discrete values (of satellite swath pixels or geographical grids), represent continuous spatial fields, one file per time step. This Divide has been an obstacle, specifically, between the Consortium of Universities for the Advancement of Hydrologic Science, Inc. and NASA earth science data systems. In essence, the way data are archived is conceptually orthogonal to the desired method of access. Our recent work has shown an optimal method of bridging the Divide, by enabling operational access to long‐time series (e.g., 36 years of hourly data) of selected NASA datasets. These time series, which we have termed “data rods,” are pre‐generated or generated on‐the‐fly. This optimal solution was arrived at after extensive investigations of various approaches, including one based on “data curtains.” The on‐the‐fly generation of data rods uses “data cubes,” NASA Giovanni, and parallel processing. The optimal reorganization of NASA earth science data has significantly enhanced the access to and use of the data for the hydrology user community.  相似文献   
452.
Shared, trusted, timely data are essential elements for the cooperation needed to optimize economic, ecologic, and public safety concerns related to water. The Open Water Data Initiative (OWDI) will provide a fully scalable platform that can support a wide variety of data from many diverse providers. Many of these will be larger, well‐established, and trusted agencies with a history of providing well‐documented, standardized, and archive‐ready products. However, some potential partners may be smaller, distributed, and relatively unknown or untested as data providers. The data these partners will provide are valuable and can be used to fill in many data gaps, but can also be variable in quality or supplied in nonstandardized formats. They may also reflect the smaller partners' variable budgets and missions, be intermittent, or of unknown provenance. A challenge for the OWDI will be to convey the quality and the contextual “fitness” of data from providers other than the most trusted brands. This article reviews past and current methods for documenting data quality. Three case studies are provided that describe processes and pathways for effective data‐sharing and publication initiatives. They also illustrate how partners may work together to find a metadata reporting threshold that encourages participation while maintaining high data integrity. And lastly, potential governance is proposed that may assist smaller partners with short‐ and long‐term participation in the OWDI.  相似文献   
453.
The southeastern United States has undergone anthropogenic changes in landscape structure, with the potential to increase (e.g., urbanization) and decrease (e.g., reservoir construction) stream flashiness and flooding. Assessment of the outcome of such change can provide insight into the efficacy of current strategies and policies to manage water resources. We (1) examined trends in precipitation, floods, and stream flashiness and (2) assessed the relative influence of land cover and flow‐regulating features (e.g., best management practices and artificial water bodies) on stream flashiness from 1991 to 2013. We found mean annual precipitation decreased, which coincided with decreasing trends in floods. In contrast, stream flashiness, overall, showed an increasing trend during the period of study. However, upon closer examination, 20 watersheds showed stable stream flashiness, whereas 5 increased and 6 decreased in flashiness. Urban watersheds were among those that increased or decreased in flashiness. Watersheds that increased in stream flashiness gained more urban cover, lost more forested cover and had fewer best management practices installed than urban watersheds that decreased in stream flashiness. We found best management practices are more effective than artificial water bodies in regulating flashy floods. Flashiness index is a valuable and straightforward metric to characterize changes in streamflow and help to assess the efficacy of management interventions.  相似文献   
454.
This study quantified the impact of bison and cattle grazing management practices on bare ground coverage at the watershed, riparian, and forested riparian scales within the Flint Hills ecoregion in Kansas. We tested for correlations between bare ground coverage and fluvial suspended sediment concentrations during base‐flow and storm‐flow events. We used remotely sensed imagery combined with field surveys to classify ground cover and quantify the presence of bare ground. Base‐flow water samples were collected bi‐monthly during rain‐free periods and 24 h following precipitation events. Storm‐flow water samples were collected on the rising limb of the hydrograph, using single‐stage automatic samplers. Ungrazed treatments contained the lowest coverage of bare ground at the watershed, riparian, and forested riparian scales. Bison treatments contained the highest coverage of bare ground at the watershed scale, while high‐density cattle treatments contained the highest coverage of bare ground at the riparian and forested riparian scales. In bison and cattle‐grazed treatments, a majority of bare ground was located near fence lines, watershed boundaries, and third‐ and fourth‐order stream segments. Inorganic sediment concentrations at base flow were best predicted by riparian bare ground coverage, while storm‐flow sediment concentrations were best predicted by watershed scale bare ground coverage.  相似文献   
455.
Generally, one expects evapotranspiration (ET) maps derived from optical/thermal Landsat and MODIS satellite imagery to improve decision support tools and lead to superior decisions regarding water resources management. However, there is lack of supportive evidence to accept or reject this expectation. We “benchmark” three existing hydrologic decision support tools with the following benchmarks: annual ET for the ET Toolbox developed by the United States Bureau of Reclamation, predicted rainfall‐runoff hydrographs for the Gridded Surface/Subsurface Hydrologic Analysis model developed by the U.S. Army Corps of Engineers, and the average annual groundwater recharge for the Distributed Parameter Watershed Model used by Daniel B. Stephens & Associates. The conclusion of this benchmark study is that the use of NASA/USGS optical/thermal satellite imagery can considerably improve hydrologic decision support tools compared to their traditional implementations. The benefits of improved decision making, resulting from more accurate results of hydrologic support systems using optical/thermal satellite imagery, should substantially exceed the costs for acquiring such imagery and implementing the remote sensing algorithms. In fact, the value of reduced error in estimating average annual groundwater recharge in the San Gabriel Mountains, California alone, in terms of value of water, may be as large as $1 billion, more than sufficient to pay for one new Landsat satellite.  相似文献   
456.
Sensors and enabling technologies are becoming increasingly important tools for water quality monitoring and associated water resource management decisions. In particular, nutrient sensors are of interest because of the well‐known adverse effects of nutrient enrichment on coastal hypoxia, harmful algal blooms, and impacts to human health. Accurate and timely information on nutrient concentrations and loads is integral to strategies designed to minimize risk to humans and manage the underlying drivers of water quality impairment. Using nitrate sensors as the primary example, we highlight the types of applications in freshwater and coastal environments that are likely to benefit from continuous, real‐time nutrient data. The concurrent emergence of new tools to integrate, manage, and share large datasets is critical to the successful use of nutrient sensors and has made it possible for the field of continuous monitoring to rapidly move forward. We highlight several near‐term opportunities for federal agencies, as well as the broader scientific and management community, that will help accelerate sensor development, build and leverage sites within a national network, and develop open data standards and data management protocols that are key to realizing the benefits of a large‐scale, integrated monitoring network. Investing in these opportunities will provide new information to guide management and policies designed to protect and restore our nation's water resources.  相似文献   
457.
Regional municipal water plans typically do not recognize complex coupling patterns or that increased withdrawals in one location can result in changes in water availability in others. We investigated the interaction between urban growth and water availability in the Baltimore metropolitan region where urban growth has occurred beyond the reaches of municipal water systems into areas that rely on wells in low‐productivity Piedmont aquifers. We used the urban growth model SLEUTH and the hydrologic model ParFlow.CLM to evaluate this interaction with urban growth scenarios in 2007 and 2030. We found decreasing groundwater availability outside of the municipal water service area. Within the municipal service area we found zones of increasing storage resulting from increased urban growth, where reduced vegetation cover dominated the effect of urbanization on the hydrologic cycle. We also found areas of decreasing storage, where expanding impervious surfaces played a larger role. Although the magnitude of urban growth and change in water availability for the simulation period were generally small, there was considerable spatial heterogeneity of changes in subsurface storage. This suggests that there are locally concentrated areas of groundwater sensitivity to urban growth where water shortages could occur or where drying up of headwater streams would be more likely. The simulation approach presented here could be used to identify early warning indicators of future risk.  相似文献   
458.
Several factors, such as municipality location and population, are thought to influence trends among stormwater utilities (SWUs); however, no analysis of the relationship between these factors and SWU characteristics has been performed. This article corroborates hypothesized relationships and identifies trends and patterns in the establishment, funding mechanism, and magnitude of SWUs by analyzing location, population density, home value, and year of establishment for a comprehensive national SWU database with data for 1,490 SWUs. The equivalent residential unit (ERU), a SWU that charges based on impervious area, was the most prevalent funding mechanism in all National Oceanic and Atmospheric Administration Climate Regions of the United States except the West and West‐North‐Central. The ERU was also found in larger cities with high population densities, whereas the Flat Fee, a SWU that charges a single rate for all properties, was found in smaller towns. Higher home values were correlated with higher monthly fees for 28% of the municipalities analyzed. The residential equivalence factor, a SWU that charges based on runoff produced, was popular in municipalities with higher home values, whereas the Flat Fee was popular in municipalities with lower home values. The number of SWUs established increased with Phase I municipal separate stormwater and sewer system (MS4) permit and Phase II small MS4 permit deadlines. Summary tables provide guidance to aid municipalities considering a SWU.  相似文献   
459.
Ground and surface water selenium (Se) contamination is problematic throughout the world, leading to harmful impacts on aquatic life, wildlife, livestock, and humans. A groundwater reactive transport model was applied to a regional‐scale irrigated groundwater system in the Lower Arkansas River Basin in southeastern Colorado to identify management practices that remediate Se contamination. The system has levels of surface water and groundwater Se concentrations exceeding the respective chronic standard and guidelines. We evaluate potential solutions by combining the transport model with an assessment of the cost to employ those practices. We use a framework common in economics and engineering fields alike, the Pareto frontier, to show the impact of four different best management practices on the tradeoffs between Se and cost objectives. We then extend that analysis to include institutional constraints that affect the economic feasibility associated with each practice. Results indicate that although water‐reducing strategies have the greatest impact on Se, they are the hardest for farmers to implement given constraints common to western water rights institutions. Therefore, our analysis shows that estimating economic and environmental tradeoffs, as is typically done with a Pareto frontier, will not provide an accurate picture of choices available to farmers where institutional constraints should also be considered.  相似文献   
460.
Since the 1990s, the local level of governance has become increasingly important in addressing the challenge of sustainable development. In this article, we compare two approaches that seek to address sustainability locally, namely Local Agenda 21 and transition management. Discussing both approaches along six dimensions (history, aim, kind of change, governance understanding, process methodologies, and actors), we formulate general insights into the governance of sustainability in cities, towns, and neighbourhoods. This dialogue illustrates two related modes of thinking about sustainability governance. We touch upon the importance of an integrated perspective on sustainability transitions through which sustainability is made meaningful locally in collaborative processes. We suggest that the explicit orientation towards radical change is a precondition for governing sustainability in a way that addresses the root causes of societal challenges. Governing sustainability should address the tensions between aiming for radical change and working with status quo-oriented actors and governing settings. We conclude that governing sustainability should be about finding creative ways for opening spaces for participation, change, and experimentation, that is, for creating alternative ideas, practices, and social relations. These spaces for innovation encourage a reflexive stance on ways of working and one's own roles and attitudes, thereby preparing a fertile terrain for actors to engage in change from different perspectives.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号